https://www.selleckchem.com/products/gdc-0068.html Automatic PBT contours were comparable to manual contours with average Dice of 0.63 to 0.79 and mean distance to agreement of 1.78 to 3.34 mm. No significant differences in dosimetric parameters were found between automatically and manually generated contours. A moderate negative correlation was found between PBT maximum dose and distance to the lesion (p less then 0.05). Variability in manual PBT delineation may result in inconsistent assessment of tumor centrality. Automatic contouring can help standardize clinical practice, support investigations into the link between SABR outcomes and lesion proximity to central airways and the development of predictive toxicity models that incorporate precise measurements of tumor location in relation to high-risk organs.Replacement of the potency tests for diphtheria vaccines is a high priority for the international initiative to reduce, refine, and replace animal use in vaccine testing. Diphtheria toxoid containing vaccine products marketed in the US currently require potency testing by the United States Public Health Service (USPHS) test, which includes an in vivo passive protection test with a diphtheria toxin challenge. Here we describe an in vitro Diphtheria Vero Cell (DVC) assay which combines the immunization approach from the USPHS test and the use of a cell based neutralization assay for serological testing of vaccine potency. The DVC assay reduces the overall number of animals used compared to other serological potency tests and eliminates the in vivo toxin challenge used in the US test. The DVC assay can be used to test vaccine products with a low or high diphtheria toxoid dose. It has been optimized and validated for use in a quality control testing environment. Results demonstrate similar sera antibody unitage as well as agreement between the serum neutralization values determined using the USPHS test and the DVC assay and thus support the use of the DVC assay for