https://www.selleckchem.com/products/lxh254.html Soils from Stinker Point are generally shallow, skeletic and strongly related to the landforms and biogenic influences. Compared with other islands of the South Shetlands, in Elephant Island soil development is less pronounced, being this mainly attributed to the metamorphic nature of parent material, with greater resistance to weathering.Antarctic plant communities show a close relationship with soil types across the landscape, where vegetation cover changes, biological influence, and soil characteristics can affect the dynamic of greenhouse gases emissions. Thus, the objective of this study was to evaluate greenhouse gases emissions in lab conditions of ice-free areas along a topographic gradient (from sea level up to 300 meters). We selected 11 distinct vegetation compositions areas and assessed greenhouse gases production potentials through 20 days of laboratory incubations varying temperatures at -2, 4, 6, and 22 °C. High N2O production potential was associated with the Phanerogamic Community under the strong ornithogenic influence (phosphorus, nitrogen, and organic matter contents). Seven different areas acted as N2O sink at a temperature of -2 °C, demonstrating the impact of low-temperature conditions contributing to store N in soils. Moss Carpets had the highest CH4 emissions and low CO2 production potential. Fruticose Lichens had a CH4 sink effect and the highest values of CO2. The low rate of organic matter provided the CO2 sink effect on the bare soil (up to 6 °C). There is an overall trend of increasing greenhouse gases production potential with increasing temperature along a toposequence.Open-water diving in a polar environment is a psychophysiological challenge to the human organism. We evaluated the effect of short-term diving (i.e., 10 min) in Antarctic waters on autonomic cardiac control, thyroid hormone concentration, body temperatures, mood, and neuropsychological responses (working memory and sleep