https://www.selleckchem.com/products/rbn013209.html A scaling model based on a fracture mechanics framework shows the importance of the mandible shape in generating optimal chip sizes. These findings contain general principles in tool design and put in focus interactions of insects and their woody hosts.Rational design of detection strategy is the key to high-performance fluorescence analysis. In this article, we found that the glucose-induced limitations can greatly enhance the fluorescence of functionalized carbon nanoparticles (CNPs), which are synthesized through one-step thermal pyrolysis method using phenylboronic acid derivative as the precursors. The glucose can assembly onto the surface of the CNPs to form a "shell", limiting the surfaces' intramolecular rotation and reducing non-radiative decay, which hence resulted in enhanced fluorescence of the CNPs. Under optimal conditions, the fluorescence intensity of the CNPs is nearly 70-fold enhanced, and the method has low detection limit (10 μM) and linear response in the concentration range from 50 μM to 2000 μM. Based on this interesting "target-triggered limitation-induced fluorescence enhancement" phenomenon, a simple and effective non-enzymatic fluorescence enhancement method was developed and successfully applied to the determination of glucose in spiked serum samples. This work provides new insight into the design of fluorescence-enhanced detection strategies based on the limitation-induced property.Development of numerical models to predict stormwater-mediated transport of pathogenic spores in the environment depends on an understanding of adhesion forces that dictate detachment after rain events. Zeta potential values were measured in the laboratory for Bacillus globigii and Bacillus thuringiensis kurstaki, two common surrogates used to represent Bacillus anthracis, in synthetic baseline ultrapure water and laboratory prepared stormwater. Zeta potential curves were also determined for materials represe