A key to effective insect pest management and insecticide resistance management is to provide growers with a range of new tools as potential alternatives to existing compounds or approaches. Sulfoxaflor (Isoclast™ active) is a new sulfoximine insecticide which is active on a broad range of sap-feeding insects, including species that have reduced susceptibility to currently used insecticides, such as imidacloprid from the neonicotinoid class. Sulfoxaflor (SFX) and imidacloprid (IMI) were tested in laboratory bioassays to compare the susceptibility of field populations of green peach aphid, Myzus persicae (Sulzer), exhibiting varying degrees of resistance involving an alteration (R81T) to the insect nicotinic acetylcholine receptor. The LC50 values for M. persicae exposed to SFX ranged from 0.09 to 1.31 (mg litre-1), whereas when the same populations were exposed to IMI the LC50 values ranged from 0.6 to 76.2 (mg litre-1). M. persicae were significantly more sensitive to SFX as compared to IMI for nine of the 1rget site resistance in M. persicae to IMI, in the form of the R81T mutation, does not a priori translate to a reduction in sensitivity to sulfoxaflor. Consequently, SFX can be an effective tool for use in insect pest management programs for green peach aphid. These data also serve as a baseline reference for green peach aphid sensitivity to SFX prior to commercial uses in Spain.Sodium pheophorbide a (SPA) is a natural photosensitizer. The present study investigated the antifungal activity and mechanism of SPA against Botrytis cinerea in vitro and in vivo. Its inhibitory effect was studied on the spore germination and mycelial growth of B. cinerea. The effects of SPA on cell wall integrity, cell membrane permeability, and mycelial morphology of B. cinerea were also determined. Additionally, how SPA effected B. cinerea in vivo was evaluated using cherry tomato fruit. The results showed that SPA effectively inhibited the spore germination and mycelial growth of B. cinerea under light conditions (4000 lx). SPA significantly affected both cell wall integrity and cell membrane permeability (P less then .05). In addition, SEM analysis suggested that B. cinerea treated with SPA (12.134 mg/mL) showed abnormal mycelial morphology, including atrophy, collapse, flattening, and mycelial wall dissolution. In vivo tests showed that SPA could increase the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) significantly (P less then .05); however, SPA had no significant effect on phenylalanine ammonia lyase (PAL) activity. In short, SPA could destroy the fungal cell structure and enhance disease resistance-related enzyme activity in cherry tomatoes, thereby controlling cherry tomato gray mold.To determine the possible role of apoptosis in the development of paraoxon-induced brain damage, we evaluated expression of apoptosis-related proteins, the extent of neuronal damage, and activation of astrocytes in rat hippocampus. Adult male Wistar rats were intraperitoneally injected with one of three doses of paraoxon (0.3, 0.7, or 1 mg/kg) or corn oil (vehicle). After 14 or 28 days, expression of apoptosis-related proteins, including B-cell leukemia/lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), and caspase-3, as well as the number of neurons and glial fibrillary acidic protein (GFAP) positive cells in hippocampus were examined by western blot, cresyl blue staining, and immunohistochemistry, respectively. After 14 and 28 days, Bax and caspase-3 proteins were significantly increased in rats receiving 0.7 and 1 mg/kg of paraoxon. A significant decrease in Bcl-2 protein levels was also observed in 0.7 and 1 mg/kg groups after 14 days and in 1 mg/kg group after 28 days. Animals treated with 1 mg/kg of paraoxon showed a significant decrease in the number of neurons in the CA1 area. Also, those treated with 0.7 and 1 mg/kg of paraoxon showed an increase in the number of GFAP positive cells in both CA1 and CA3 areas as well as a significant decrease in survived neurons in the CA3 area. Our results indicated that neuronal damage induced by convulsive doses of paraoxon in rat hippocampus is mediated in part through apoptosis mechanism. Activation of astrocytes might lead to reduced extent of damage and damage and consequently increased neuronal survival.Cyperus difformis has evolved resistance to pyrazosulfuron-ethyl and other acetohydroxyacid synthase (AHAS) inhibitors in paddy fields in China. To understand the distribution of resistance and the mutations involved, 38 populations collected were from 7 provinces and compared. Application of pyrazosulfuron-ethyl at 30 g a.i. ha-1 identified 16 populations that survived, demonstrating resistance to this herbicide. Two exons of 498 and 1428 bp in length and a 1228-1233-bp intron of AHAS were cloned by genome walking, and three pairs of primers were designed to amplify eight conserved regions in this gene. In the 16 resistant (R) populations, five different types of mutations in the conserved region of the AHAS gene were identified Pro-197-Ser, Pro-197-Arg, Pro-197-Leu, Asp-376-Glu, and Trp-574-Leu. Three R populations, YX15-22, YX12-10 and YX15-38, were chosen for in vitro AHAS activity assays, and the results showed that AHAS from YX15-22 carrying the Pro-197 mutation was insensitive to pyrazosulfuron-ethyl (resistance index (RI) = 310.0) and penoxsulam (RI = 10.0), whereas the enzyme from YX12--10 and YX15-38 was insensitive to pyrazosulfuron-ethyl, penoxsulam, imazapic and bispyribac‑sodium (RI values ranging from 4.3 to 4462.0). AHAS inhibitor cross-resistance bioassays showed that YX12-10 and YX15-38 had cross-resistance to all of the tested herbicides (RI values ranging from 5.8 to 3321.9), while the YX15-22 population only had resistance to pyrazosulfuron-ethyl (RI = 827.4) and penoxsulam (RI = 6.6). https://www.selleckchem.com/products/jnj-64619178.html This study clarified the distribution of resistant C. difformis in China and the different cross-resistance patterns given by various mutation types of AHAS.In recent years, substantial effort was spent on the exploration and implementation of RNAi technology using double-stranded RNA (dsRNA) for pest management purposes. However, only few studies investigated the geographical variation in RNAi sensitivity present in field-collected populations of the targeted insect pest. In this baseline study, 2nd instar larvae of 14 different European populations of Colorado potato beetle (CPB), Leptinotarsa decemlineata, collected from nine different countries were exposed to a foliarly applied diagnostic dose of dsactin (dsact) to test for possible variations in RNAi response. Only minor variability in RNAi sensitivity was observed between populations. However, the time necessary to trigger a dsRNA-mediated phenotypic response varied significantly among populations, indicated by significant differences in mortality figures obtained five days after treatment. An inbred German laboratory reference strain D01 and a Spanish field strain E02 showed almost 100% mortality after foliar exposure to 30 ng dsactin (equal to 0.