https://www.selleckchem.com/products/tp-1454.html Viticultural practices and landscape composition are the main drivers influencing biological pest control in vineyards. Predatory mites, mainly phytoseiid (Phytoseiidae) and tydeoid mites (Tydeidae), are important to control phytophagous mites (Tetranychidae and Eriophyidae) on vines. In the absence of arthropod prey, pollen is an important food source for predatory mites. In 32 paired vineyards located in Burgenland/Austria, we examined the effect of landscape composition, management type (organic/integrated), pesticide use, and cover crop diversity of the inter-row on the densities of phytoseiid, tydeoid, and phytophagous mites. In addition, we sampled pollen on vine leaves. Typhlodromus pyri Scheuten was the main phytoseiid mite species and Tydeus goetzi Schruft the main tydeoid species. Interestingly, the area-related acute pesticide toxicity loading was higher in organic than in integrated vineyards. The densities of phytoseiid and tydeoid mites was higher in integrated vineyards and in vineyards with spontaneous vegetation. Their population also profited from an increased viticultural area at the landscape scale. Eriophyoid mite densities were extremely low across all vineyards and spider mites were absent. Biological pest control of phytophagous mites benefits from less intensive pesticide use and spontaneous vegetation cover in vineyard inter-rows, which should be considered in agri-environmental schemes.Functional molecule-based solids built of metal complexes can reveal a great impact of external stimuli upon their optical, magnetic, electric, and mechanical properties. We report a novel molecular material, [EuIII(H2O)3(pyrone)4][CoIII(CN)6]·nH2O (1, n = 2; 2, n = 1), which was obtained by the self-assembly of Eu3+ and [Co(CN)6]3- ions in the presence of a small 2-pyrrolidinone (pyrone) ligand in an aqueous medium. The as-synthesized material, 1, consists of dinuclear cyanido-bridged EuCo molecules accompan