https://www.selleckchem.com/products/sotrastaurin-aeb071.html Discrete dipole approximation (DDA) is a computational method broadly used to solve light scattering problems. In this work, we propose an extension of DDA that we call Chiral-DDA (CDDA), to study light-chiral matter interactions with the capability of describing the underlying physics behind. Here, CDDA is used to solve and analyze the interaction of a nanoantenna (either metallic or dielectric) with a chiral molecule located in its near field at different positions. Our method allowed to relate near field interactions with far field spectral response of the system, elucidating the role that the nanoantenna electric and magnetic polarizabilities play in the coupling with a chiral molecule. In general, this is not straightforward with other methods. We believe that CDDA has the potential to help researchers revealing some of the still unclear mechanisms responsible for the chiral signal enhancements induced by nanoantennas.The temperature of atoms, coupled to several effects, plays an important role in high precision atom interferometry gravimeters. In this work, we present an ultra-cold 87Rb atom interferometry gravimeter, in which the atom source is produced by evaporative cooling in an all optical dipole trap to investigate the effects related to atom temperature. A condensate containing 4 × 104 atoms can be prepared within 3.2 s through an all-optical dipole trap composed of two reservoirs and a dimple. The fringe contrast of our atom interferometry gravimeter reaches up to 76(4)% due to the advantage of ultra-cold atom source even at a free evolution time of T=80 ms. A resolution of 6 μGal (1 μGal=1×10-8 m/s2) after 3000 s integration time with a sampling rate of 0.25 Hz is achieved in this atom gravimeter. The relationship between the fringe contrast and the atom temperature in the atom gravimeter is studied; in addition, the wavefront aberration effect in the atom gravimeter is also investigated by