https://www.selleckchem.com/products/acetylcysteine.html The concept of hormesis includes a biphasic cellular dose-response to a xenobiotic stimulus defined by low dose beneficial and high dose inhibitory or toxic effects. In the present study, an attempt has been made to help elucidate the beneficial and detrimental effects of thymol on different cell types by evaluating and comparing the impact of various thymol doses on cancerous (AGS) and healthy (WS-1) cells. Cytotoxic, genotoxic, and apoptotic effects, as well as levels of reactive oxygen species and glutathione were studied in both cell lines exposed to thymol (0-600 µM) for 24 h. The results showed significant differences in cell viability of AGS compared to WS-1 cells exposed to thymol. The differences observed were statistically significant at all doses applied (P ≤ 0.001) and revealed hormetic thymol effects on WS-1 cells, whereas toxic effects on AGS cells were detectable at all thymol concentrations. Thymol at low concentrations provides antioxidative protection to WS-1 cells in vitro while already inducing toxic effects in AGS cells. In that sense, the findings of the present study suggest that thymol exerts a dose-dependent hormetic impact on different cell types, thereby providing crucial information for future in vivo studies investigating the therapeutic potential of thymol.Dendropanax morbifera is a versatile plant that has been used as a herbal medicine due to its various useful medicinal effects. To protect its active component from biological stress and increase its drug efficacy as well as drug bioavailability, nanoemulsion was prepared. Dendropanax morbifera zinc oxide nanoparticles (DM-ZnO NPs) were synthesized using the plant extract via the co-precipitation method and loaded with active indole-3-carbinol for nanoemulsion formulation using the ultrasonication process. Field emission transmission electron microscope revealed the flower shape of the Dendropanax morbifera indole-3-carbinol zin