https://www.selleckchem.com/products/AZD0530.html To address these problems, we fabricated silicon nitride metasurfaces on quartz substrates and applied Rayleigh anomalies at relatively short wavelengths to successfully suppress high-order Mie resonances, thus creating vivid color pixels. We performed numerical design, semianalytic considerations, and experimental proof-of-concept examinations to demonstrate the performance of the silicon nitride metasurfaces. Apart from traditional metasurface designs that involve transmission and reflection modes, we determined that lateral light incidence on silicon nitride metasurfaces can provide vivid colors through long-range dipole interactions; this can thus extend the applications of such surfaces to eyewear displays and guided-wave illumination techniques.The bacterial genus Staphylococcus comprises diverse species that colonize the skin as commensals but can also cause infection. Previous work identified a family of serine hydrolases termed fluorophoshonate-binding hydrolases (Fphs) in the pathogenic bacteria Staphylococcus aureus, one of which, FphB, functions as a virulence factor. Using a combination of bioinformatics and activity-based protein profiling (ABPP), we identify homologues of these enzymes in the related commensal bacteria Staphylococcus epidermidis. Two of the S. aureus Fph enzymes were not identified in S. epidermidis. Using ABPP, we identified several candidate hydrolases that were not previously identified in S. aureus that may be functionally related to the Fphs. Interestingly, the activity of the Fphs vary across clinical isolates of S. epidermidis. Biochemical characterization of the FphB homologue in S. epidermidis (SeFphB) suggests it is a functional homologue of FphB in S. aureus, but our preliminary studies suggest it may not have a role in colonization in vivo. This potential difference in biological function between the Fphs of closely related staphylococcal species may provide mechanisms for