Being able to pick out particular sounds, such as speech, against a background of other sounds represents one of the key tasks performed by the auditory system. Understanding how this happens is important because speech recognition in noise is particularly challenging for older listeners and for people with hearing impairments. Central to this ability is the capacity of neurons to adapt to the statistics of sounds reaching the ears, which helps to generate noise-tolerant representations of sounds in the brain. In more complex auditory scenes, such as a cocktail party - where the background noise comprises other voices, sound features associated with each source have to be grouped together and segregated from those belonging to other sources. This depends on precise temporal coding and modulation of cortical response properties when attending to a particular speaker in a multi-talker environment. Furthermore, the neural processing underlying auditory scene analysis is shaped by experience over multiple timescales.To provide new insights into the mechanisms through which seminal plasma proteins can protect sperm from damage caused during refrigeration, we evaluate the possibility that β-NGF can contribute to the improvement of sperm quality after cooling. First, β-NGF was detected in refrigerated sperm and compared with unrefrigerated sperm by western blotting of the proteins adsorbed by sperm, showing that native β-NGF is still present even 24 h after cooling only as an active form. Then, the effect of exogenous β-NGF on sperm quality after cooling was evaluated. A total of 12 ejaculates from male llamas (three ejaculates per male), were obtained by electro-ejaculation, diluted 41 with buffer Hepes-balanced salt solution and centrifuged at 800 × g for 8 min to remove the seminal plasma. Sperm were suspended in Tris-citrate-fructose-egg yolk diluent for a final concentration of 30 ×106/ml and cooled at 5°C for 24 h. After refrigeration, the extended sperm were equilibrated for 5 min at 37°C and divided into the followipost-refrigerated sperm suggests that supplementation with exogenous β-NGF may be profitable for the improvement of cooled llama sperm. Although traditional treatments confer survival benefits to patients with gastric cancer (GC), many patients experience relapse soon after postoperative adjuvanttherapy. Immune-related mechanisms play an important role in GC, and immunotherapeutic strategies are considered to be a promising direction for the treatment of GC. https://www.selleckchem.com/CDK.html Thus, our study aimed to investigate the expression and prognostic significance of immune-related genes in GC. Formalin-fixed, paraffin-embedded samples were collected from 48 resectable GC patients. The transcriptome data of the tumor immune microenvironment were assessed using an immuno-oncology 395-gene panel RNA sequencing platform. The prognostic value of the 395 genes was analyzed and validated in the KM plotter and GEPIA databases. The data from The Cancer Genome Atlas (TCGA, downloaded from UCSC Xena repository) and Tumor IMmune Estimation Resource (TIMER) were used to evaluate the correlations between prognostic factors and immune signatures. Among the 395 genes, NOTCH3 wasrget or predictive marker for GC patients. These findings uncovered a new mechanism by which NOTCH3 participates in the immune tolerance of GC, implying the potential of NOTCH3 as a therapeutic target or predictive marker for GC patients.The present study is aimed at analysing the feasibility of bioelectrochemical treatment of bagasse-based paper mill wastewater. Bioelectrochemical treatment was carried out in dual-chambered microbial fuel cell with plain graphite plates as electrodes. Wastewater from sugarcane bagasse storage and washing units of paper mill was used as anolyte. High power density and current density of 53 mW m-2 and 173 mA m-2 at 470 Ω, respectively, could be produced with wastewater treatment efficiency of 85% and coulumbic efficiency of 6%. Whereas, wastewater from pulping and bleaching units of bagasse-based paper mill was not suitable for bioelectrochemical treatment, yielding low power density and current density of 4 mW m-2 and 16 mA m-2 respectively at 10,000 Ω. Later, treating blended wastewater containing bagasse wash water and pulping wastewater in the ratio of 91 v/v generated higher power density and current density of 73 mW m-2/202 mA m-2, respectively, at 470 Ω, with wastewater treatment efficiency and coulumbic efficiency of 82% and 18%, respectively. Lignin and its derivatives present in pulping wastewater mediated electron transfer leading to high power density. Further, compounds in pulping wastewater were also toxic to methanogens growth in anode chamber of MFC, resulting in improved coulumbic efficiency of the blended wastewater treatment.Microbial communities from a lake and river flowing through a highly dense urbanized township in Malaysia were profiled by sequencing amplicons of the 16S V3-V4 and 18S V9 hypervariable rRNA gene regions via Illumina MiSeq. Results revealed that Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the dominant prokaryotic phyla; whereas, eukaryotic communities were predominantly of the SAR clade and Opisthokonta. The abundance of Pseudomonas and Flavobacterium in all sites suggested the possible presence of pathogens in the urban water systems, supported by the most probable number (MPN) values of more than 1600 per 100 mL. Urbanization could have impacted the microbial communities as transient communities (clinical, water-borne and opportunistic pathogens) coexisted with common indigenous aquatic communities (Cyanobacteria). It was concluded that in urban water systems, microbial communities vary in their abundance of microbial phyla detected along the water systems. The influences of urban land use and anthropogenic activities influenced the physicochemical properties and the microbial dynamics in the water systems. The online version contains supplementary material available at 10.1007/s13205-020-02617-3. The online version contains supplementary material available at 10.1007/s13205-020-02617-3.