https://www.selleckchem.com/products/lgk-974.html This paper describes the background, test methodology, and experimental results associated with the testing and analysis of quasi-static compression testing of additively manufactured open-cell lattice structures. The study aims to examine the effect of lattice topology, cell size, cell density, and surface thickness on the mechanical properties of lattice structures. Three lattice designs were chosen, the Diamond, I-WP, and Primitive Triply Periodic Minimal Surfaces (TPMSs). Uniaxial compression tests were conducted for every combination of the three lattice designs, three cell sizes, three cell densities, and three surface thicknesses. In order to perform an efficient experiment and gain the most information possible, a four-factor statistical experimental design was planned and followed throughout testing. A full four-factor statistical model was produced, along with a reduced interactions model, separating the model by the significance of each factor and interaction terms. The impact of each factor was analyzed and interpreted from the resulting data, and then conclusions were made about the effects of the design parameters on the resultant mechanical performance.This paper aims to explain the phenomenon of laser light trapping (LLT) in a 3D polymer gel dosimeter. A VIC-T polymer gel dosimeter containing 17% N-vinylpyrrolidone, 8% N,N'-methylenebisacrylamide, 12% tert-butyl alcohol, 5% gelatine, 0.02% hydroquinone and 14 mM tetrakis(hydroxymethyl)phosphonium chloride was used in this study. It was exposed to green laser light with a wavelength of 532 nm. A film was recorded during the exposure. After exposure, Raman spectroscopy was used to study the reactions taking place inside the dosimeter. The obtained results were used to explain what the LLT phenomenon is, what are the consequences for the dosimeter in which such a phenomenon occurs, and what dosimeter components play an important role in the occurrence of