https://www.selleckchem.com/products/abraxane-nab-paclitaxel.html Background The hypoxia of the tumor microenvironment (TME), low transfer efficiency of photosensitizers and limited diffusion distance of reactive oxygen species restrict the application of photodynamic therapy (PDT). Aim To produce TME-responsive and effective nanoparticles for sensitizing PDT. Materials & methods CD44 and mitochondria grade-targeted hyaluronic acid (HA)-triphenylphosphine (TPP)-aminolevulinic acid (ALA)-catalase (CAT) nanoparticles (HTACNPs) were synthesized via a modified double-emulsion method. In vitro and in vivo experiments were performed to investigate the antitumor efficacy of HTACNP-mediated PDT. Results HTACNPs specifically targeted MV3 cells and the mitochondria and produced O2 to relieve TME hypoxia. HTACNP-mediated PDT produced reactive oxygen species to induce irreversible cell apoptosis. HTACNP-PDT inhibited melanoma growth effectively in vivo. Conclusion HTACNP-mediated PDT improved TME hypoxia and effectively enhanced PDT for cancer.Introduction The integrin αvβ6 is a promising therapeutic target due to its limited expression in healthy tissue and significant overexpression in cancer and fibrosis. The peptide A20FMDV2, derived from the foot and mouth disease virus, is highly selective for αvβ6, and can be used therapeutically to target αvβ6 expressing cells.Areas covered In this review, the authors discuss the logic that led to the discovery of A20FMDV2, the importance of its stereochemistry in receptor-binding, and the strategies employed to use it as a molecular-specific drug delivery system. These strategies include creating A20FMDV2-drug conjugates, genetically modifying oncolytic viruses to express A20FMDV2 and thus redirect their tropism to predominantly αvβ6 expressing cells, creation of A20FMDV2 expressing CAR T-cells, and modifying antibody tropism by inserting A20FMDV2 into the CDR3 loop.Expert opinion αvβ6 is one of the most promising therapeutic targets i