Cereal feedstocks have high arabinoxylan content as their main hemicellulose, which is linked to lignin by hydroxycinnamic acids such as ferulic acid. The ferulic acid is linked to arabinoxylan by ester bonds, and generally, the high substitution of ferulic acid leads to a loss of activity of xylanases targeting the arabinoxylan. In the current study, a feruloyl esterase (FAE-1) from a termite hindgut bacteria was functionally characterised and used in synergy with xylanases during xylan hydrolysis. The FAE-1 displayed temperature and pH optima of 60 ℃ and 7.0, respectively. FAE-1 did not release reducing sugars from beechwood xylan (BWX), wheat arabinoxylan (WAX) and oat spelt xylan (OX), however, displayed high activity of 164.74 U/mg protein on p-nitrophenyl-acetate (pNPA). In contrast, the GH10 xylanases; Xyn10 and XT6, and a GH11 xylanase, Xyn2A, showed more than two-fold increased activity on xylan substrates with low sidechain substitutions; BWX and OX, compared to the highly branched substrate, WAX. Interestingly, the FAE-1 and GH10 xylanases (Xyn10D and XT6) displayed a degree of synergy (DS) that was higher than 1 in all enzyme loading combinations during WAX hydrolysis. The 75%XT625%FAE-1 synergistic enzyme combination increased the release of reducing sugars by 1.34-fold from WAX compared to the control, while 25%Xyn10D75%FAE-1 synergistic combination released about 2.1-fold of reducing sugars from WAX compared to controls. These findings suggest that FAE-1 can be used in concert with xylanases, particularly those from GH10, to efficiently degrade arabinoxylans contained in cereal feedstocks for various industrial settings such as in animal feeds and baking.In this conceptual article, we draw upon the literature regarding cognitive and behavioural factors that underpin childhood anxiety to outline how a range of these risk markers might be targeted through adventurous play. When children play in an adventurous way, climbing trees, riding their bikes fast downhill and jumping from rocks, they experience feelings of fear and excitement, thrill and adrenaline. We propose that the positive, thrilling and playful emotions associated with this type of child-led play facilitate exposure to fear-provoking situations and, in doing so, provide opportunities for children to learn about physiological arousal, uncertainty and coping. We hypothesise that these learning opportunities will, over time, reduce children's risk for elevated anxiety by increasing children's expectations and ability to cope with anxiety, decreasing intolerance of uncertainty and preventing catastrophic misinterpretations of physiological arousal. If our conceptual model is correct, then ensuring that children have the physical and psychological space required to play in an adventurous way may help to decrease their risk for elevated or clinical anxiety. In this descriptive study of male and female mice at different weeks of age, we use serial non-invasive cardiac 18F-FDG-PET scans to follow up on metabolic alterations, heart function parameters, and the ECG of both sexes in early to mid-adulthood. ECG-gated 18F-FDG-PET scans were performed in mice on 10, 14, and 18weeks of age, using a dedicated small-animal PET scanner. The percentage of the injected activity per gram (%IA/g) in the heart, left ventricular metabolic volume (LVMV), myocardial viability and left ventricular function parameters end-diastolic (EDV), end-systolic (ESV), stroke volume (SV), and the ejection fraction (EF%) were estimated. Compared to their age-matched female counterpart, male mice showed a constant increase in LVMV and ventricular volume during the follow-up. In contrast, female mice remain stable after ten weeks of age. Furthermore, male mice showed lower heart rates, positive correlation with cardiac %IA/g, and negative correlation with LVMV. In this study of serial cardiac PET scans, we provide insight for basic murine research models, showing that mice gender and age show distinct cardiac metabolisms. These physiologic alterations need to be considered when planning in vivo injury models to avoid potential pitfalls. In this study of serial cardiac PET scans, we provide insight for basic murine research models, showing that mice gender and age show distinct cardiac metabolisms. These physiologic alterations need to be considered when planning in vivo injury models to avoid potential pitfalls.Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. Long noncoding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been implicated in PD development. Nevertheless, little insight has been gained on the mechanisms of UCA1 in PD pathogenesis. The levels of UCA1, miR-423-5p and potassium channel tetramerization domain containing 20 (KCTD20) were assessed by qRT-PCR and western blot. Cell viability was gauged by the CCK-8 assay, and cell apoptosis was detected by flow cytometry. Targeted relationships among UCA1, miR-423-5p and KCTD20 were verified by dual-luciferase reporter and RNA immunoprecipitation assays. Our data showed that MPP+ induced UCA1 expression in SK-N-SH cells. UCA1 silencing protected against MPP+-evoked cytotoxicity in SK-N-SH cells. UCA1 functioned as a miR-423-5p sponge, and the protective impact of UCA1 silencing on MPP+-evoked cytotoxicity was mediated by miR-423-5p. KCTD20 was a direct target of miR-423-5p, and miR-423-5p overexpression mitigated MPP+-triggered cell injury by down-regulating KCTD20. Furthermore, UCA1 regulated KCTD20 expression by acting as a sponge of miR-423-5p in SK-N-SH cells. Our study first identified that the silencing of UCA1 protected SK-N-SH cells from MPP+-evoked cytotoxicity at least in part by targeting the miR-423-5p/KCTD20 axis.Planarian Dugesia japonica is a flatworm that can autonomously regenerate its own body after an artificial amputation. https://www.selleckchem.com/products/pqr309-bimiralisib.html A recent report showed the role of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway in the head morphogenesis during the planarian regeneration process after amputation; however, neuron-specific regeneration mechanisms have not yet been reported. Here, whether MEK/ERK pathway was involved in the dopaminergic neuronal regeneration in planarians was investigated. Planarians regenerated their body within 14 days after amputation; however, the head region morphogenesis was inhibited by MEK inhibitor U0126 (3 or 10 μM). Furthermore, the number of planarian tyrosine hydroxylase (DjTH)-positive dopaminergic neurons in the regenerated head region was also decreased by U0126. The 6-hydroxydopamine (6-OHDA), a dopaminergic neurotoxin, can decrease the number of dopaminergic neurons; however, planarians can regenerate dopaminergic neurons after injecting 6-OHDA into the intestinal tract.