The process of uptake and translocation of non-organic iodine (I) ions, I- and IO3 -, has been relatively well-described in literature. The situation is different for low-molecular-weight organic aromatic I compounds, as data on their uptake or metabolic pathway is only fragmentary. The aim of this study was to determine the process of uptake, transport, and metabolism of I applied to lettuce plants by fertigation as KIO3, KIO3 + salicylic acid (KIO3+SA), and iodosalicylates, 5-iodosalicylic acid (5-ISA) and 3,5-diiodosalicylic acid (3,5-diISA), depending on whether additional fertilization with vanadium (V) was used. Each I compound was applied at a dose of 10 μM, SA at a dose of 10 μM, and V at a dose of 0.1 μM. Three independent 2-year-long experiments were carried out with lettuce; two with pot systems using a peat substrate and mineral soil and one with hydroponic lettuce. The effectiveness of I uptake and translocation from the roots to leaves was as follows 5-ISA > 3,5-diISA > KIO3. Iodosalicylates, 5-ISA and 3,5-diISA, were naturally synthesized in plants, similarly to other organic iodine metabolites, i.e., iodotyrosine, as well as plant-derived thyroid hormone analogs (PDTHA), triiodothyronine (T3) and thyroxine (T4). T3 and T4 were synthesized in roots with the participation of endogenous and exogenous 5-ISA and 3,5-diISA and then transported to leaves. The level of plant enrichment in I was safe for consumers. Several genes were shown to perform physiological functions, i.e., per64-like, samdmt, msams5, and cipk6.Pyrimidine de novo synthesis is an essential pathway in all organisms. The final and rate-limiting step in the synthesis of the nucleotide cytidine triphosphate (CTP) is catalyzed by CTP synthase (CTPS), and Arabidopsis harbors five isoforms. Single mutant lines defective in each one of the four isoforms do not show apparent phenotypical alterations in comparison to wild-type plants. However, Arabidopsis lines that contain T-DNA insertions in the CTPS2 gene were unable to produce homozygous offspring. Here, we show that CTPS2 exhibits a distinct expression pattern throughout embryo development, and loss-of-function mutants are embryo lethal, as siliques from +/ctps2 plants contained nearly 25% aborted seeds. This phenotype was rescued by complementation with CTPS2 under control of its endogenous promoter. CTPS2GFP lines revealed expression only in the tip of columella cells in embryo root tips of the heart and later stages. Furthermore, CTPS2 expression in mature roots, most pronounced in the columella cells, shoots, and vasculature tissue of young seedlings, was observed. Filial generations of +/ctps2 plants did not germinate properly, even under external cytidine supply. During embryo development, the CTPS2 expression pattern resembled the established auxin reporter DR5GFP. Indeed, the cloned promoter region we used in this study possesses a repeat of an auxin response element, and auxin supply increased CTPS2 expression in a cell-type-specific manner. https://www.selleckchem.com/products/AZD8055.html Thus, we conclude that CTPS2 is essential for CTP supply in developing embryos, and loss-of-function mutants in CTPS2 are embryo lethal.We previously isolated a single domain antibody (VHH) that binds Enterohemorrhagic Escherichia coli (EHEC) with the end-goal being the enteromucosal passive immunization of cattle herds. To improve the yield of a chimeric fusion of the VHH with an IgA Fc, we employed two rational design strategies, supercharging and introducing de novo disulfide bonds, on the bovine IgA Fc component of the chimera. After mutagenizing the Fc, we screened for accumulation levels after transient transformation in Nicotiana benthamiana leaves. We identified and characterized five supercharging and one disulfide mutant, termed '(5 + 1)Fc', that improve accumulation in comparison to the native Fc. Combining all these mutations is associated with a 32-fold increase of accumulation for the Fc alone, from 23.9 mg/kg fresh weight (FW) to 599.5 mg/kg FW, as well as a twenty-fold increase when fused to a VHH that binds EHEC, from 12.5 mg/kg FW tissue to 236.2 mg/kg FW. Co-expression of native or mutated VHH-Fc with bovine joining chain (JC) and bovine secretory component (SC) followed by co-immunoprecipitation suggests that the stabilizing mutations do not interfere with the capacity of VHH-Fc to assemble with JC and FC into a secretory IgA. Both the native and the mutated VHH-Fc similarly neutralized the ability of four of the seven most prevalent EHEC strains (O157H7, O26H11, O111Hnm, O145Hnm, O45H2, O121H19 and O103H2), to adhere to HEp-2 cells as visualized by immunofluorescence microscopy and quantified by fluorometry. These results collectively suggest that supercharging and disulfide bond tethering on a Fc chain can effectively improve accumulation of a VHH-Fc fusion without impacting VHH functionality.Plant acyl-CoA-binding proteins (ACBPs) form a highly conserved protein family that binds to acyl-CoA esters as well as other lipid and protein interactors to function in developmental and stress responses. This protein family had been extensively studied in non-leguminous species such as Arabidopsis thaliana (thale cress), Oryza sativa (rice), and Brassica napus (oilseed rape). However, the characterization of soybean (Glycine max) ACBPs, designated GmACBPs, has remained unreported although this legume is a globally important crop cultivated for its high oil and protein content, and plays a significant role in the food and chemical industries. In this study, 11 members of the GmACBP family from four classes, comprising Class I (small), Class II (ankyrin repeats), Class III (large), and Class IV (kelch motif), were identified. For each class, more than one copy occurred and their domain architecture including the acyl-CoA-binding domain was compared with Arabidopsis and rice. The expression profile, tertiary structure and subcellular localization of each GmACBP were predicted, and the similarities and differences between GmACBPs and other plant ACBPs were deduced. A potential role for some Class III GmACBPs in nodulation, not previously encountered in non-leguminous ACBPs, has emerged. Interestingly, the sole member of Class III ACBP in each of non-leguminous Arabidopsis and rice had been previously identified in plant-pathogen interactions. As plant ACBPs are known to play important roles in development and responses to abiotic and biotic stresses, the in silico expression profiles on GmACBPs, gathered from data mining of RNA-sequencing and microarray analyses, will lay the foundation for future studies in their applications in biotechnology.