This could indicate that, for countries transitioning to middle income, policies and investments strengthening economic linkages between urban centers and their surrounding rural areas may be as important as investing in urbanization or the rural hinterlands. The dataset provided can support national economic planning and territorial development strategies by enabling policy makers to focus more in depth on urban-rural interactions.Recent dramatic and deadly increases in global wildfire activity have increased attention on the causes of wildfires, their consequences, and how risk from wildfire might be mitigated. Here we bring together data on the changing risk and societal burden of wildfire in the United States. We estimate that nearly 50 million homes are currently in the wildland-urban interface in the United States, a number increasing by 1 million houses every 3 y. To illustrate how changes in wildfire activity might affect air pollution and related health outcomes, and how these linkages might guide future science and policy, we develop a statistical model that relates satellite-based fire and smoke data to information from pollution monitoring stations. Using the model, we estimate that wildfires have accounted for up to 25% of PM 2.5 (particulate matter with diameter less then 2.5 μm) in recent years across the United States, and up to half in some Western regions, with spatial patterns in ambient smoke exposure that do not follow traditional socioeconomic pollution exposure gradients. We combine the model with stylized scenarios to show that fuel management interventions could have large health benefits and that future health impacts from climate-change-induced wildfire smoke could approach projected overall increases in temperature-related mortality from climate change-but that both estimates remain uncertain. https://www.selleckchem.com/products/guanosine.html We use model results to highlight important areas for future research and to draw lessons for policy.Time series data on arthropod populations are critical for understanding the magnitude, direction, and drivers of change. However, most arthropod monitoring programs are short-lived and restricted in taxonomic resolution. Monitoring data from the Arctic are especially underrepresented, yet critical to uncovering and understanding some of the earliest biological responses to rapid environmental change. Clear imprints of climate on the behavior and life history of some Arctic arthropods have been demonstrated, but a synthesis of population-level abundance changes across taxa is lacking. We utilized 24 y of abundance data from Zackenberg in High-Arctic Greenland to assess trends in abundance and diversity and identify potential climatic drivers of abundance changes. Unlike findings from temperate systems, we found a nonlinear pattern, with total arthropod abundance gradually declining during 1996 to 2014, followed by a sharp increase. Family-level diversity showed the opposite pattern, suggesting increasing dominance of a small number of taxa. Total abundance masked more complicated trajectories of family-level abundance, which also frequently varied among habitats. Contrary to expectation in this extreme polar environment, winter and fall conditions and positive density-dependent feedbacks were more common determinants of arthropod dynamics than summer temperature. Together, these data highlight the complexity of characterizing climate change responses even in relatively simple Arctic food webs. Our results underscore the need for data reporting beyond overall trends in biomass or abundance and for including basic research on life history and ecology to achieve a more nuanced understanding of the sensitivity of Arctic and other arthropods to global changes.A number of recent studies have documented long-term declines in abundances of important arthropod groups, primarily in Europe and North America. These declines are generally attributed to habitat loss, but a recent study [B.C. Lister, A. Garcia, Proc. Natl. Acad. Sci. USA 115, E10397-E10406 (2018)] from the Luquillo Experimental Forest (LEF) in Puerto Rico attributed declines to global warming. We analyze arthropod data from the LEF to evaluate long-term trends within the context of hurricane-induced disturbance, secondary succession, and temporal variation in temperature. Our analyses demonstrate that responses to hurricane-induced disturbance and ensuing succession were the primary factors that affected total canopy arthropod abundances on host trees, as well as walkingstick abundance on understory shrubs. Ambient and understory temperatures played secondary roles for particular arthropod species, but populations were just as likely to increase as they were to decrease in abundance with increasing temperature. The LEF is a hurricane-mediated system, with major hurricanes effecting changes in temperature that are larger than those induced thus far by global climate change. To persist, arthropods in the LEF must contend with the considerable variation in abiotic conditions associated with repeated, large-scale, and increasingly frequent pulse disturbances. Consequently, they are likely to be well-adapted to the effects of climate change, at least over the short term. Total abundance of canopy arthropods after Hurricane Maria has risen to levels comparable to the peak after Hurricane Hugo. Although the abundances of some taxa have declined over the 29-y period, others have increased, reflecting species turnover in response to disturbance and secondary succession.Reports of declines in biomass of flying insects have alarmed the world in recent years. However, how biomass declines reflect biodiversity loss is still an open question. Here, we analyze the abundance (19,604 individuals) of 162 hoverfly species (Diptera Syrphidae), at six locations in German nature reserves in 1989 and 2014, and generalize the results with a model varying decline rates of common vs. rare species. We show isometric decline rates between total insect biomass and total hoverfly abundance and a scale-dependent decline in hoverfly species richness, ranging between -23% over the season to -82% at the daily level. We constructed a theoretical null model to explore how strong declines in total abundance translate to changing rank-abundance curves, species persistence, and diversity measures. Observed persistence rates were disproportionately lower than expected for species of intermediate abundance, while the rarest species showed decline and appearance rates consistent with random expectation. Our results suggest that large insect biomass declines are predictive of insect diversity declines.