https://www.selleckchem.com/products/dmx-5084.html Potassium ions (K+) present in wastewater has caused severe interference for NH4+ monitoring, over-estimation of NH4+ concentration and ultimately leads to extra energy consumption. Past effort for enhancing the selectivity of NH4+ over K+ were oftentimes complex, costly, or compromised the selectivity and accuracy of the NH4+ ion selective membrane (ISM) sensors. This study targeted this imminent challenge by developing an integrated NH4+/K+ auto-correction solid-state ISM (S-ISM) sensor assembly combined with a data-driven model to monitor [NH4+] under different [NH4+] and [K+] concentrations. The results showed that the interference of K+ was substantially alleviated for NH4+ measurement. The accuracy was enhanced by over 70% when examined using real wastewater and energy consumption was expected to reduce by 26% for a wastewater treatment plant, especially for wastewater with high [K+]. Furthermore, the uniquely structured S-ISMs were made by embedding the ionophores in a robust polyvinyl chloride (PVC) matrix containing plasticizers and a layer of carbon nanotubes (CNT) as ion-to-electron transducer, which maintained the selectivity and accuracy of the S-ISM sensor for 4 weeks in wastewater. NH4+/K+ sensor assembly integrated with data-driven correction models poses great potential in high-efficiency and energy-saving wastewater treatment and water reuse processes.This study investigates the individual and simultaneous degradation and mineralization of the antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP) in aqueous solution by ozonation, ozone-activated persulfate (PS) and hydrogen peroxide (H2O2) processes. The trials were carried out in a semi-continuous column bubble reactor with an ozone diffuser located at the bottom of the column for a period of 2 h. Furthermore, the efficiency of studied processes were evaluated at two different initial pH and various doses of oxidants. The target compounds deg