Our results also quantify the relationship between delta age estimates obtained based on different processing parameters. Furthermore, with the direct comparison of the two approaches, we highlight the importance of correct choice of smoothing and parcellation parameters in each task, and how they can affect the results of the analysis in opposite directions.When plants are exposed to hypoxic conditions, the level of γ-aminobutyric acid (GABA) in plant tissues increases by several orders of magnitude. The physiological rationale behind this elevation remains largely unanswered. By combining genetic and electrophysiological approach, in this work we show that hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to cytosolic K+ homeostasis and Ca2+ signaling. We show that reduced O2 availability affects H+-ATPase pumping activity, leading to membrane depolarization and K+ loss via outward-rectifying GORK channels. Hypoxia stress also results in H2O2 accumulation in the cell that activates ROS-inducible Ca2+ uptake channels and triggers self-amplifying "ROS-Ca hub," further exacerbating K+ loss via non-selective cation channels that results in the loss of the cell's viability. Hypoxia-induced elevation in the GABA level may restore membrane potential by pH-dependent regulation of H+-ATPase and/or by generating more energy through the activation of the GABA shunt pathway and TCA cycle. Elevated GABA can also provide better control of the ROS-Ca2+ hub by transcriptional control of RBOH genes thus preventing over-excessive H2O2 accumulation. Finally, GABA can operate as a ligand directly controlling the open probability and conductance of K+ efflux GORK channels, thus enabling plants adaptation to hypoxic conditions.Accumulating evidence has revealed that the ubiquitin proteasome system plays fundamental roles in the regulation of diverse cellular activities in eukaryotes. The ubiquitin protein ligases (E3s) are central to the proteasome system because of their ability to determine its substrate specificity. Several studies have demonstrated the essential role of a group of ER (endoplasmic reticulum)-localized E3s in the positive or negative regulation of cell homeostasis. Most ER-related E3s are conserved between plants and mammals, and a few plant-specific components have been reported. In this review, we summarize the functions of ER-related E3s in plant growth, ER-associated protein degradation and ER-phagy, abiotic and biotic stress responses, and hormone signaling. Furthermore, we highlight several questions that remain to be addressed and suggest directions for further research on ER-related E3 ubiquitin ligases.Most legume plants can associate with diazotrophic soil bacteria called rhizobia, resulting in new root organs called nodules that enable N2 fixation. Nodulation is an energy-consuming process, and nodule number is tightly regulated by independent systemic signaling pathways controlled by CLE/SUNN and CEP/CRA2. Moreover, nitrate inhibits legume nodulation via local and systemic regulatory pathways. In Medicago truncatula, NLP1 plays important roles in nitrate-induced inhibition of nodulation, but the relationship between systemic and local pathways in mediating nodulation inhibition by nitrate is poorly understood. In this study, we found that nitrate induces CLE35 expression in an NLP1-dependent manner and that NLP1 binds directly to the CLE35 promoter to activate its expression. Grafting experiments revealed that the systemic control of nodule number involves negative regulation by SUNN and positive regulation by CRA2 in the shoot, and that NLP1's control of the inhibition of rhizobial infection, nodule development, and nitrogenase activity in response to nitrate is determined by the root. Unexpectedly, grafting experiments showed that loss of CRA2 in the root increases nodule number at inhibitory nitrate levels, probably because of CEP1/2 upregulation in the cra2 mutants, suggesting that CRA2 exerts active negative feedback regulation in the root.Unlike most crops, in which soil acidity severely limits productivity, tea (Camellia sinensis) actually prefers acid soils (pH 4.0-5.5). Specifically, tea is very tolerant of acidity-promoted aluminum (Al) toxicity, a major factor that limits the yield of most other crops, and it even requires Al for optimum growth. https://www.selleckchem.com/products/bos172722.html Understanding tea Al tolerance and Al-stimulatory mechanisms could therefore be fundamental for the future development of crops adapted to acid soils. Here, we summarize the Al-tolerance mechanisms of tea plants, propose possible mechanistic explanations for the stimulation of tea growth by Al based on recent research, and put forward ideas for future crop breeding for acid soils.Crops are exposed to attacks by various pathogens that cause substantial yield losses and severely threaten food security. To cope with pathogenic infection, crops have elaborated strategies to enhance resistance against pathogens. In addition to the role of protein-coding genes as key regulators in plant immunity, accumulating evidence has demonstrated the importance of non-coding RNAs (ncRNAs) in the plant immune response. Here, we summarize the roles and molecular mechanisms of endogenous ncRNAs, especially microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in plant immunity. We discuss the coordination between miRNAs and small interfering RNAs (siRNAs), between lncRNAs and miRNAs or siRNAs, and between circRNAs and miRNAs in the regulation of plant immune responses. We also address the role of cross-kingdom mobile small RNAs in plant-pathogen interactions. These insights improve our understanding of the mechanisms by which ncRNAs regulate plant immunity and can promote the development of better approaches for breeding disease-resistant crops.Stomatal aperture controls the balance between transpirational water loss and photosynthetic carbon dioxide (CO2) uptake. Stomata are surrounded by pairs of guard cells that sense and transduce environmental or stress signals to induce diverse endogenous responses for adaptation to environmental changes. In a recent decade, hydrogen sulfide (H2S) has been recognized as a signaling molecule that regulates stomatal movement. In this review, we summarize recent progress in research on the regulatory role of H2S in stomatal movement, including the dynamic regulation of phytohormones, ion homeostasis, and cell structural components. We focus especially on the cross talk among H2S, nitric oxide (NO), and hydrogen peroxide (H2O2) in guard cells, as well as on H2S-mediated post-translational protein modification (cysteine thiol persulfidation). Finally, we summarize the mechanisms by which H2S interacts with other signaling molecules in plants under abiotic or biotic stress. Based on evidence and clues from existing research, we propose some issues that need to be addressed in the future.