Background Giant hypothalamic hamartomas (HHs) are extremely rare lesions, for which the treatment is challenging. While minimally invasive treatments such as radiofrequency thermal coagulation and laser ablation have improved seizure outcomes, multiple operations are often required. This study investigated the value of one-stage stereo-array radiofrequency thermocoagulation based on stereotactic electroencephalography (SEEG) for pediatric giant HHs. Methods We analyzed the clinical data of six patients with giant HHs (masses with a maximum diameter >30 mm) who underwent stereotactic electrode implantation between November 2017 and April 2019. After a multidisciplinary discussion, we designed a high-density focal stereo-array electrode implantation strategy. SEEG-guided bipolar coagulations were performed between two contiguous contacts of the same electrode, or between two adjacent contacts of different electrodes. Results Among the six patients, three were male and three were female, with an average age of 5.08 ± 4.73 years (range, 1.4-12 years); the average follow-up duration was 20.17 ± 5.49 months. One patient had previously undergone open surgery. Four patients had gelastic seizures, one had gelastic and tonic seizures, and one had gelastic and generalized tonic-clonic seizures. The number of implanted electrodes ranged from 3 to 7, with an average of 5.33. One patient had transient diabetes insipidus after the operation, and no child had fever or new hormone metabolisms disorder after surgery. Four patients had Engel I classification outcomes (free from disabling seizures), and two patients had Engel II classification outcomes. https://www.selleckchem.com/Proteasome.html Conclusion Although the exploration of epileptic activity and the extent of ablation are limited by the number of SEEG electrodes for the complete disconnection. One-stage high-density focal stereo-array SEEG-guided radiofrequency was safe and effective for treating pediatric giant HH patients. It can be an alternative method to treat giant HHs where LITT is unavailable.Background In patients with acute ischemic stroke, hemorrhagic transformation is a major complication after intravenous thrombolysis. This study aimed to investigate the relationship between serum magnesium levels and hemorrhagic transformation (HT) after thrombolytic therapy. Methods We retrospectively analyzed data from 242 patients who received thrombolytic therapy at the Second Affiliated Hospital of the Wenzhou Medical University in China. Baseline serum magnesium levels were measured before intravenous thrombolysis, and the occurrence of HT was evaluated using computed tomography images reviewed within 24-36 h after therapy. The relationship between serum magnesium levels and HT was examined using multivariate logistic regression, subgroup analysis, and restricted cubic spline models. Results Of the 242 included patients, 43 (17.8%) developed HT. Patients with HT had significant lower serum magnesium levels than those without HT (0.81 ± 0.08 vs. 0.85 ± 0.08 mmol/L, p = 0.007). Multivariable logistic regression analysis indicated that patients with higher serum magnesium levels had lower risk of HT (OR per 0.1-mmol/L increase 0.43, 95% CI 0.27-0.73, p = 0.002). However, this association did not persist when baseline levels of serum magnesium were higher than the median value (0.85 mmol/L) in subgroup analysis (OR per 0.1-mmol/L increase 0.58, 95% CI 0.14-2.51, p = 0.47). This threshold effect was also observed in the restricted cubic spline model when serum magnesium levels were above 0.88 mmol/L. No association between symptomatic HT and serum magnesium levels was observed in our study (OR per 0.1-mmol/L increase 0.52, 95% CI 0.25-1.11, p = 0.092). Conclusions Lower serum magnesium levels in patients with ischemic stroke are associated with an increased risk of HT after intravenous thrombolysis, but perhaps only when serum magnesium is below a certain minimal concentration.Randomized Controlled Trials (RCTs) are considered the gold standard for measuring the efficacy of medical interventions. However, RCTs are expensive, and use a limited population. Techniques to estimate the effects of stroke interventions from observational data that minimize confounding would be useful. We used regression discontinuity design (RDD), a technique well-established in economics, on the Get With The Guidelines-Stroke (GWTG-Stroke) data set. RDD, based on regression, measures the occurrence of a discontinuity in an outcome (e.g., odds of home discharge) as a function of an intervention (e.g., alteplase) that becomes significantly more likely when crossing the threshold of a continuous variable that determines that intervention (e.g., time from symptom onset, since alteplase is only given if symptom onset is less than e.g., 3 h). The technique assumes that patients near either side of a threshold (e.g., 2.99 and 3.01 h from symptom onset) are indistinguishable other than the use of the treatment. We compared outcomes of patients whose estimated onset to treatment time fell on either side of the treatment threshold for three cohorts of patients in the GWTG-Stroke data set. This data set spanned three different treatment thresholds for alteplase (3 h, 2003-2007, N = 1,869; 3 h, 2009-2016, N = 13,086, and 4.5 h, 2009-2016, N = 6,550). Patient demographic characteristics were overall similar across the treatment thresholds. We did not find evidence of a discontinuity in clinical outcome at any treatment threshold attributable to alteplase. Potential reasons for failing to find an effect include violation of some RDD assumptions in clinical care, large sample sizes required, or already-well-chosen treatment threshold.Background Hemorrhagic transformation (HT) is an important complication of intravenous thrombolysis with alteplase. HT can show a wide range from petechiae to parenchymal hematoma with mass effect with varying clinical impact. We studied clinical and imaging characteristics of patients with HT and evaluated whether different types of HT are associated with functional outcome. Methods We performed a post-hoc analysis of WAKE-UP, a multicenter, randomized, placebo-controlled trial of MRI-guided intravenous alteplase in unknown onset stroke. HT was assessed on follow-up MRI or CT and diagnosed as hemorrhagic infarction type 1 and type 2 (HI1 and HI2, combined as HI), and parenchymal hemorrhage type 1 and type 2 (PH1 and PH2, combined as PH). Severity of stroke symptoms was assessed using the National Institutes of Health Stroke Scale (NIHSS) at baseline. Stroke lesion volume was measured on baseline diffusion weighted imaging (DWI). Primary endpoint was a favorable outcome defined as a modified Rankin Scale score 0-1 at 90 days.