https://www.selleckchem.com/products/lgx818.html https://www.selleckchem.com/products/lgx818.html Intersectional inequalities inside emotional wellness across multiple dimensions of inequality in the Swedish grown-up human population. Single-cell bisulfite sequencing (scBS-seq) enables profiling of DNA methylation at single-nucleotide resolution and across all genomic features. It can explore methylation differences between cells in mixed cell populations and profile methylation in very rare cell types, such as mammalian oocytes and cells from early embryos. Here, we outline the scBS-seq protocol in a 96-well plate format applicable to studies of moderate throughput.DNA methylation is extensively reprogrammed during mammalian embryogenesis and germ cell development. Protocols for genome-wide bisulfite sequencing enable the quantification of DNA methylation with high precision and single base-pair resolution; however they can be limited by the necessity for high amounts of DNA. Here we describe optimized reduced representation bisulfite sequencing (RRBS) and whole genome bisulfite sequencing (WGBS) protocols for low amounts of DNA, which include steps to estimate the minimal number of PCR cycles needed for the final library preparation to minimize PCR biases. These protocols require no more than 5 ng DNA and can easily be applied to mammalian cells available in small quantities such as early embryos or primordial germ cells.Early preimplantation embryos are precious and scarce samples that contain limited numbers of cells, which can be problematic for quantitative gene expression analyses. Nonetheless, low-input genome-wide techniques coupled with cDNA amplification steps have become a gold standard for RNA profiling of as minimal as a single blastomere. Here, we describe a single-cell/single-embryo RNA sequencing (RNA-seq) method, from embryo collection to sample validation steps prior to DNA library preparation and sequencing. Key quality controls and external Spik