Lung fibrosis and tissue remodeling are features of chronic diseases such as severe asthma, idiopathic pulmonary fibrosis, and systemic sclerosis. However, fibrosis-targeted therapies are currently limited. We demonstrate in mouse models of allergen- and bleomycin-driven airway inflammation that neutralization of the TNF family cytokine TL1A through Ab blocking or genetic deletion of its receptor DR3 restricted increases in peribronchial smooth muscle mass and accumulation of lung collagen, primary features of remodeling. TL1A was found as a soluble molecule in the airways and expressed on the surface of alveolar macrophages, dendritic cells, innate lymphoid type 2 cells, and subpopulations of lung structural cells. DR3 was found on CD4 T cells, innate lymphoid type 2 cells, macrophages, fibroblasts, and some epithelial cells. Suggesting in part a direct activity on lung structural cells, administration of recombinant TL1A into the naive mouse airways drove remodeling in the absence of other inflammatory stimuli, innate lymphoid cells, and adaptive immunity. Correspondingly, human lung fibroblasts and bronchial epithelial cells were found to express DR3 and responded to TL1A by proliferating and/or producing fibrotic molecules such as collagen and periostin. Reagents that disrupt the interaction of TL1A with DR3 then have the potential to prevent deregulated tissue cell activity in lung diseases that involve fibrosis and remodeling.The NLRP3 inflammasome is associated with a variety of human diseases, including cryopyrin-associated periodic syndrome (CAPS). CAPS is a dominantly inherited disease with NLRP3 missense mutations. Currently, most studies on the NLRP3-inflammasome have been performed with mice, but the activation patterns and the signaling pathways of the mouse NLRP3 inflammasome are not always identical with those in humans. The NLRP3 inflammasome activation in pigs is similar to that in humans. Therefore, pigs with precise NLRP3-point mutations may model human CAPS more accurately. In this study, an NLRP3 gain-of-function pig model carrying a homozygous R259W mutation was generated by combining CRISPR/Cpf1-mediated somatic cell genome editing with nuclear transfer. The newborn NLRP3 R259W homozygous piglets showed early mortality, poor growth, and spontaneous systemic inflammation symptoms, including skin lesion, joint inflammation, severe contracture, and inflammation-mediated multiorgan failure. Severe myocardial fibrosis was also observed. The tissues of inflamed skins and several organs showed significantly increased expressions of NLRP3, Caspase-1, and inflammation-associated cytokines and factors (i.e., IL-1β, TNF-α, IL-6, and IL-17). Notably, approximately half of the homozygous piglets grew up to adulthood and even gave birth to offspring. Although the F1 heterozygous piglets showed improved survival rate and normal weight gain, 39.1% (nine out of 23) of the piglets died early and exhibited spontaneous systemic inflammation symptoms. In addition, similar to homozygotes, adult heterozygotes showed increased delayed hypersensitivity response. Thus, the NLRP3 R259W pigs are similar to human CAPS and can serve as an ideal animal model to bridge the gap between rodents and humans.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which rapidly became a pandemic of global proportions. Sepsis is commonly present with high lethality in the severe forms of the disease. The virus-induced cytokine storm puts the immune system in overdrive at the expense of the pathogen-specific immune response and is likely to underlie the most advanced COVID-19 clinical features, including sepsis-related multiple organ dysfunction as well as the pathophysiological changes found in the lungs. We review the major therapeutic strategies that have been considered for sepsis and might be amenable to repurposing for COVID-19. We also discuss two different immunization strategies that have the potential to confer antiviral heterologous protection innate-induced trained immunity and adaptive-induced immune response resetting. Immunotherapies, such as immune checkpoint inhibitors and adoptive cell therapies, have revolutionized cancer treatment and resulted in complete and durable responses in some patients. Unfortunately, most immunotherapy treated patients still fail to respond. https://www.selleckchem.com/products/Ilginatinib-hydrochloride.html Absence of T cell infiltration to the tumor site is one of the major obstacles limiting immunotherapy efficacy against solid tumors. Thus, the development of strategies that enhance T cell infiltration and broaden the antitumor efficacy of immunotherapies is greatly needed. We used mouse tumor models, genetically deficient mice and vascular endothelial cells (VECs) to study the requirements for T cell infiltration into tumors. A specific formulation of poly-IC, containing poly-lysine and carboxymethylcellulose (PICLC) facilitated the traffic and infiltration of effector CD8 T cells into the tumors that reduced tumor growth. Surprisingly, intratumoral injection of PICLC was significantly less effective in inducing tumor T cell infiltration and controic cancer vaccines. These findings have strong implications for the improvement of all types of T cell-based immunotherapies for solid cancers. We predict that systemic administration of PICLC will improve immune checkpoint inhibitor therapy, adoptive cell therapies and therapeutic cancer vaccines. Antibody-drug conjugates are an exceptional and useful therapeutic tool for multiple diseases, particularly for cancer treatment. We previously showed that the fusion of the serine protease granzyme B (GrB), the effector molecule or T and B cells, to a binding domain allows the controlled and effective delivery of the cytotoxic payload into the target cell. The production of these constructs induced the formation of high molecular aggregates with a potential impact on the efficacy and safety of the protein. Our laboratory designed a new Fn14 targeted fusion construct designated GrB(C210A)-Fc-IT4 which contains a modified GrB payload for improved protein production and preserved biological activity. We assessed the construct's enzymatic activity, as well as in vitro cytotoxicity and internalization into target cells. We also assessed pharmacokinetics, efficacy and toxicology parameters in vivo. GrB(C210A)-Fc-IT4 protein exhibited high affinity and selective cytotoxicity within the nanomolar range when tested against a panel of Fn14-positive human cancer cell lines.