https://www.selleckchem.com/products/Gefitinib.html Subtilases represent the second largest subfamily of serine proteases, and are important for various biological processes. However, the biological function of subtilases has not been systematically characterized in plant pathogens. In present study, 32 subtilases were identified in the genome of wheat scab fungus Fusarium graminearum, a devastating cereal plant pathogen. Deletion mutants of each subtilase were obtained and functionally characterized. Among them, the deletion of FgPrb1 resulted in greatly reduced virulence of F. graminearum. The regulatory mechanisms of FgPrb1 in virulence were investigated in details. Our results showed that the loss of FgPrb1 led to defects in deoxynivalenol (DON) production, responses to environmental stimuli, and lipid metabolism. Additionally, we found that FgPrb1 was involved in autophagy regulation. Taken together, the systematic functional characterization of subtilases showed that the FgPrb1 of F. graminearum is critical for plant infection by regulating multiple different cellular processes.The rhLIF is widely used as an essential factor in stem cell cultures for cell therapies. However, all the recombinant LIFs commercially available are expensive, and no commercially available rhLIF meet the standards recommended by USP for use in cell therapies. The current study reports the efficient production of N-glycosylated and bioactive rhLIF in CHO cells. The production rate of established rhLIF-expressing rCHO cells was approximately 0.85 g/l in 12-day fed-batch cultures using a 7.5 l bioreactor. The rhLIF protein was purified via a four-step purification procedure with approximately 57% recovery rate and greater than 99% purity. The purified rhLIF was N-glycosylated and biologically active with an EC50 of 0.167 ng/ml and a specific activity of 0.86 × 103 IU/mg. The purification procedure controlled the levels of process-related impurities below critical levels recommended by U