https://www.selleckchem.com/products/INCB18424.html Sterol synthesis is a highly complex and integrated pathway in mammals. In the present review, we briefly summarize the main steps of this pathway, especially concerning its main rate-limiting enzymes, HMG-CoA reductase (HMGCR) and squalene epoxidase (SQLE), in relation with cancer. We focus on studies reporting key findings linking cholesterol with cancer. The inhibition of HMGCR and SQLE to prevent and inhibit cancer are reviewed. Finally, a pan-cancer review of publicly available data on genomic aberrations in the main enzymes involved in sterol biosynthesis and their transcription factors is reported, providing hitherto unexplored findings that may be the subject of future research in cancer metabolomics and tumor targeted treatment.Colorectal cancer ranks among the top three most frequent malignancies in the world. While overall incidence and mortality of colorectal cancer has substantially decreased in recent years, tumor subtypes with poor response rates to standard antiproliferative therapies remain particularly challenging. Hypoxia in the microenvironment of solid tumors is associated with malignant progression, e.g. local invasion, systemic spread and therapy resistance. A detailed molecular understanding of hypoxia's role for the pathobiology of colorectal cancer is a prerequisite to design and evaluate the consequences of interference with hypoxic signaling for the progression of this cancer type. Here, we summarize the current knowledge about the role of hypoxia-inducible factor 1, an essential molecular mediator of the hypoxic response, for colorectal cancer pathogenesis. Special attention is given to intestinal microbiota, gut barrier integrity and chronic inflammation as these are of pivotal importance for intestinal tumorigenesis and noticeably associated with hypoxic signaling.Estrogen hormones protect against colorectal cancer (CRC) and a preventative role of estrogen receptor beta (ERĪ²) on CRC h