https://www.selleckchem.com/products/AZD8055.html 001). Multivariable logistic regression revealed that high levofloxacin MIC was a predictor of 30-day mortality (odds ratio [OR], 6.05; 95% confidence interval [CI], 1.51 to 24.18; P = 0.011). We consistently found similar results in a propensity score-matched cohort (OR, 5.38; 95% CI, 1.06 to 27.39; P = 0.043). The emergence of levofloxacin-resistant isolates was more common in the high-MIC group than the low-MIC group (25.0% versus 7.5%; P = 0.065). An estimated area under the concentration-time curve/MIC ratio of ≥87 was significantly associated with better survival (P = 0.002). In conclusion, patients infected with isolates with levofloxacin MICs within the pre-2019 CLSI susceptible range of 1 or 2 μg/ml exhibited higher mortality than those infected with isolates with MICs of ≤0.5 μg/ml.Molecular surveillance by whole-genome sequencing was used to monitor the susceptibility of circulating influenza A viruses to three polymerase complex inhibitors. A total of 12 resistance substitutions were found among 285 genomes analyzed, but none were associated with high levels of resistance. Natural resistance to these influenza A antivirals is currently uncommon.Salmonella enterica can exist in food animals as multiserovar populations, and different serovars can harbor diverse antimicrobial resistance (AMR) profiles. Conventional Salmonella isolation assesses AMR only in the most abundant members of a multiserovar population, which typically reflects their relative abundance in the initial sample. Therefore, AMR in underlying serovars is an undetected reservoir that can readily be expanded upon antimicrobial use. CRISPR-SeroSeq profiling demonstrated that 60% of cattle fecal samples harbored multiple serovars, including low levels of Salmonella serovar Reading in 11% of samples, which were not found by culture-based Salmonella isolation. An in vitro challenge revealed that Salmonella serovar Reading was tetracycline resist