https://www.selleckchem.com/products/Obatoclax-Mesylate.html Aliphatic azides are a versatile class of compounds found in a variety of biologically active pharmaceuticals. These compounds are also recognized as useful precursors for the synthesis of a range of nitrogen-based scaffolds of therapeutic drugs, biologically active compounds, and functional materials. In light of the growing importance of aliphatic azides in both chemical and biological sciences, a vast array of synthetic strategies for the preparation of structurally diverse aliphatic azides have been developed over the past decades. However, to date, this topic has not been the subject of a dedicated review. This review aims to provide a concise overview of modern synthetic strategies to access aliphatic azides that have emerged since 2010. The discussed azidation reactions include (a) azidation of C-C multiple bonds, (b) azidation of C-H bonds, (c) the direct transformation of vinyl azides into other aliphatic azides, and (d) miscellaneous reactions to access aliphatic azides. We critically discuss the synthetic outcomes and the generality and uniqueness of the different mechanistic rationale of each of the selected reactions. The challenges and potential opportunities of the topic are outlined.Marine ecosystems present the largest source of biodiversity on the planet and an immense reservoir of novel chemical entities. Sessile marine organisms such as sponges produce a wide range of complex secondary metabolites, many of these with potent biological activity engineered for chemical defense. That such compounds exert dynamic effects outside of their native context is perhaps not surprising, and the realm of marine natural products has attracted considerable attention as a largely untapped repository of potential candidates for drug development. Only a handful of the more than 15 000 marine natural products that have been isolated to date have advanced to the clinic, and more are to be expected. The ric