https://www.selleckchem.com/products/azd9291.html Agriculture has reached a technological inflection point. The development of novel gene editing tools and methods for their delivery to plant cells promises to increase genome malleability and transform plant biology. Whereas gene editing is capable of making a myriad of DNA sequence modifications, its widespread adoption has been hindered by a number of factors, particularly inefficiencies in creating precise DNA sequence modifications and ineffective methods for delivering gene editing reagents to plant cells. Here, we briefly overview the principles of plant genome editing and highlight a subset of the most recent advances that promise to overcome current limitations. Municipal solid waste incineration (MSWI) is one of the leading technologies for municipal solid waste (MSW) treatment in Europe. Incineration bottom ash (IBA) is the main solid residue from MSWI, and its annual European production is about 20 million tons. The composition of IBA depends on the composition of the incinerated waste; therefore, it may contain significant amounts of ferrous and non-ferrous (NFe) metals as well as glass that can be recovered. Technologies for NFe metals recovery have emerged in IBA treatment since the 1990s and became common practice in many developed countries. Although the principles and used apparatus are nearly the same in all treatment trains, the differences in technological approaches to recovery of valuable components from IBA - with a special focus on NFe metals recovery - are summarized in this paper. From the perspective of the mechanism of soil pollution, it is difficult to explain the process of predicting the spatial distributions of soil heavy metal pollution using traditional geostatistical methods at a regional scale. Furthermore, few methods are available to proactively identify potential risk areas for preventing soil contamination. In this study, we selected 13 environmental factors related to the acc