https://www.selleckchem.com/products/k03861.html As reported in Chemosphere by Colles et al. (2020), there are multiple pathways for human exposure to poly- and perfluoroalkyl substances (PFAS). Now, a new chemical formation of C-F bonds in drug delivery lead to concerns for human exposure as these inert chemical formations are resistance to metabolic degradation and excretion. The emergent demand for food production has increased the widespread use of pesticides, especially glyphosate-based herbicides as they can protect different types of crops, especially transgenic ones. Molecules of glyphosate have been found in water bodies around the world, and its presence can cause negative effects on non-target organisms, such as fish. Glyphosate toxicity appears to be systemic in fish but does not affect their organs equally. Also, its formulations can be more toxic than pure glyphosate. In this sense, we investigated if these variations in toxicity could be related to ATP binding cassette subfamily C (ABCC) transporters and the cellular detoxification capacity, following exposure to herbicides. Thus, adults of Danio rerio were exposed (24 and 96 h) to glyphosate and Roundup Transorb® (RT) at an environmental concentration of 0.1 mg/L, and the activity of ABCC proteins and gene expression of five isoforms of ABCC were analyzed. Glyphosate and RT exposure increased ABCC protein activity and gene expression up to 3-fold when compared to controls, indicating the activation of detoxification mechanisms. Only in the brain of D. rerio, the exposure to RT did not stimulate the activity of ABCC proteins, neither the expression of genes abcc1 and abcc4 that responded to the exposure to pure glyphosate. These results may suggest that the brain is more sensitive to RT than the other target-tissues since the mechanism of detoxification via ABCC transporters were not activated in this tissue as it was in the other. Hispanics/Latinx (H/Ls) are the largest ethnic minority group in the U