https://www.selleckchem.com/products/jr-ab2-011.html Host adaptive mutations in the influenza A virus (IAV) PB2 protein are critical for human infection, but their molecular action is not well understood. We observe that when IAV containing avian PB2 infects mammalian cells, viral ribonucleoprotein (vRNP) aggregates that localize to the microtubule-organizing center (MTOC) are formed. These vRNP aggregates resemble LC3B-associated autophagosome structures, with aggresome-like properties, in that they cause the re-distribution of vimentin. However, electron microscopy reveals that these aggregates represent an accumulation of autophagic vacuoles. Compared to mammalian-PB2 virus, avian-PB2 virus induces higher autophagic flux in infected cells, indicating an increased rate of autophagosomes containing avian vRNPs fusing with lysosomes. We found that p62 is essential for the formation of vRNP aggregates and that the Raptor-interacting region of p62 is required for interaction with vRNPs through the PB2 polymerase subunit. Selective autophagic sequestration during late-stage virus replication is thus an additional strategy for host restriction of avian-PB2 IAV.The introduction of rest intervals interspersed with practice strengthens wakeful consolidation of skill. The mechanisms by which the brain binds discrete action representations into consolidated, highly temporally resolved skill sequences during waking rest are not known. To address this question, we recorded magnetoencephalography (MEG) during acquisition and rapid consolidation of a sequential motor skill. We report the presence of prominent, fast waking neural replay during the same rest periods in which rapid consolidation occurs. The observed replay is temporally compressed by approximately 20-fold relative to the acquired skill, is selective for the trained sequence, and predicts the magnitude of skill consolidation. Replay representations extend beyond the hippocampus and entorhinal cortex to the contralat