https://www.selleckchem.com/products/LY335979.html In the anammox process treating low-strength municipal wastewater, the effect of common seasonal temperature variation (15.1 °C-22.2 °C) on performance was studied. In autumn and winter, the nitrogen removal rate (NRR) decrement of 0.038kgN/(m3·d) (17.9 °C → 15.1 °C) was nearly threefold higher than 0.014kgN/(m3·d) (22.2 °C → 17.9 °C), which showed that lower temperature laid more negative impact on nitrogen removal. 15N isotope tracing tests confirmed that the contribution of denitrification to nitrogen removal was far less than anammox, and anammox contributed more at 15.1 °C (91.7%) than 21.9 °C (78.9%). Anammox bacteria could adapt to lower temperature after short-term acclimatization, especially the dominant genus Ca. Brocadia increased from 1.8% to 2.5% and its abundance was significantly correlated with nitrogen consumption (p less then 0.05). Above findings suggest that the adaptability of Ca. Brocadia could provide the possibility to maintain nitrogen removal performance at lower temperature. In spring, the improved maximum anammox activity from 2.85 to 3.23mgNH4+-N/(gVSS·h) indicated the recovered removal capacity.The anaerobic co-digestion (AcoD) of FWs produces variable methane yields, mainly due to variable carbon/nitrogen (C/N) ratio and proportions of lipids (L), carbohydrates (C), and proteins (P) in different FW samples. In this study, a significant interaction between C/N ratio and LCP composition was found and contributed to the differing trends between special (SMP) and theoretical methane production. The highest SMP of 595 mL CH4 gVS-1 occurred at C/N of 25 and LCP of 63.2522.6214.13, followed by 592 mL CH4 gVS-1 at C/N of 30 and LCP of 48.9439.7411.32, which also reflected their interaction. Attributing to their interactive effect on obtaining optimal process parameters and microbial community, the inhibition threshold of lipid as well as the methane yield was increased. Understanding the inter