https://www.selleckchem.com/products/arv-825.html Passiflora setacea is a wild species of passion fruit with interesting functional properties. Fruit seasonality demands conservation methods to enable its consumption throughout the year. We evaluated High Temperature Short Time (HTST) and Low Temperature Long Time (LTLT) binomials on physical, chemical, antioxidant and sensory characteristics of Passiflora setacea pulps. In natura (IN) and pasteurized pulps were analysed for DPPH, FRAP, ORAC, total phenolic content (TPC), vitamin C, bioactive amines, flavonoids, color, remaining enzymatic activity (REA), microbiological analyzes, sensory evaluation and physical stability. All binomials reached microbiological standards. Binomials 82 °C/20 s and 82 °C/40 s were selected for providing higher total antioxidant activity (TAA), TPC and lower REA. The highest levels of antioxidant activity, flavonoids, vitamin C were kept by 82 °C/20 s, without difference from IN pulp. LTLT binomial showed higher retention of bioactive amines, but also higher REA. Sensory acceptance was not affected by the binomials but pasteurized-cooked flavor was more checked for 82 °C 40 s than IN pulp. © 2020 The Authors.In 2013, the senior author delivered the American Academy of Ophthalmology Robert N. Shaffer Lecture entitled "Glaucoma Changes-Reality Bites." This talk focused on describing the longitudinal structure-function relationships in glaucoma progression. The study was based on a 10-year longitudinal dataset created by calibrated measurements across multiple OCT generations with corresponding visual fields (VFs). The prior held observation was that functional damage follows structural damage. The lecture posited that structure and function change at similar times, but that current measurement technology limits our ability to detect functional abnormalities and change early in glaucoma, as well as to measure structural change late in the disease. The Shaffer lecture provided evidence that