https://www.selleckchem.com/products/lithium-chloride.html frutescens performed high capacity in Cd accumulation, and PCs played a key role in Cd tolerance. The application prospect of the plant in phytoremediation Cd polluted soil was also discussed.Surface fires occur naturally or anthropogenically and can raise the temperature at the soil surface up to 600 °C. The heat derived from the surface fire can be subsequently transferred into CO2-enriched subsoils. As a result, the chemical compositions of soil organic matter (SOM) may be altered in fire-impacted anaerobic environments, indirectly influencing the redox transformations of pollutants, such as Cr(VI). In this study, a peat soil was heated up to 600 °C with limited air flow to simulate the effects of heat on the SOM during surface fire events. Then, Cr(VI) removal, including reduction and sorption, by the heat-treated peat soils was determined in relation to changes in the soil organic components. The results showed that the amount of O-containing functional groups, -CH2/-CH3 units of aliphatic groups, and dissolved organic carbon (DOC) in the SOM gradually decreased with an increase in the heating temperature. The removal of 0.1932 mM Cr(VI) did not exhibit a consistent decline along with the changes in these soil components. The heating temperatures of 200 and 250 °C were the thresholds that led to the decomposition of temperature-sensitive soil organic components such as lignin and other labile SOM. Such newly released organic fragments synergized lignin-like substances and carboxyl groups, resulting in up to 99% removal of the initially added Cr(VI). As the heating temperatures were increased from 300 to 600 °C, Cr(VI) reduction decreased from 66% to 20%. The black carbon-like materials and/or aromatic-containing moieties were the major components responsible for Cr(VI) reduction in 600°C-treated peat soils.Auditory dysfunction is a common symptom of autism spectrum disorder (ASD) and ranges from decreas