https://www.selleckchem.com/products/fht-1015.html BJU International © 2020 BJU International Published by John Wiley & Sons Ltd.Glyburide is a classic antidiabetic drug that is dominant in inflammation regulation, but its specific role in ozone-induced lung inflammation and injury remains unclear. In order to investigate whether glyburide prevents ozone-induced pulmonary inflammation and its mechanism, C57BL/6 mice were intratracheally pre-instilled with glyburide or the vehicle 1 hour before ozone (1 ppm, 3 hours) or filtered air exposure. After 24 hours, the total inflammatory cells and total protein in bronchoalveolar lavage fluid (BALF) were detected. The pathological alternations in lung tissues were evaluated by HE staining. The expression of NLRP3, interleukin-1β (IL-1β), and IL-18 protein in lung tissues was detected by immunohistochemistry. Western blotting was used to examine the levels of caspase-1 p10 and active IL-1β protein. Levels of IL-1β and IL-18 in BALF were measured using ELISA kits. Glyburide treatment decreased the total cells in BALF, the inflammatory score, and the mean linear intercept induced by ozone in lung tissues. In addition, glyburide inhibited the expression of NLRP3, IL-18, and IL-1β protein in lung tissues, and also suppressed NLRP3 inflammasome activation, including caspase-1 p10, active IL-1β protein in lung tissues, IL-1β, and IL-18 in BALF. These results demonstrate that glyburide effectively attenuates ozone-induced pulmonary inflammation and injury via blocking the NLRP3 inflammasome. © 2020 Wiley Periodicals, Inc.Irrigation is an important adaptation strategy to improve crop resilience to global climate change. Irrigation plays an essential role in sustaining crop production in water-limited regions, as irrigation water not only benefits crops through fulfilling crops' water demand but also creates an evaporative cooling that mitigates crop heat stress. Here we use satellite remote sensing and maize yield data in the state