https://www.selleckchem.com/products/adaptaquin.html Neuraminidase (NA) is an important target for current research on anti-influenza drugs. The acylhydrazone derivatives containing the -CONHN=CH- framework have been shown to have good NA inhibitory activity. In this paper, a series of novel acylhydrazone NA inhibitors (9a-9n) were designed and synthesized, and the inhibitory activities against NA were evaluated in vitro. The NA inhibition results showed that compound 9j has the most potent inhibitory activity (IC50 = 0.6 μM) against NA, which is significantly lower than that of the positive control oseltamivir carboxylic acid (OSC) (IC50 = 17.00 μM). Molecular docking analysis indicates that the acylhydrazone group plays an important role in compound 9j, which can bind well to the residues Arg371 and Arg292 in the S1 subsite of NA. The good potency of 9j may be also ascribed to the extending of morpholinyl ring into the 430-cavity. The results of this work may contribute to the development of more potent NA inhibitors to against mutant influenza viruses.Serine proteases comprise about one-third of all proteases, and defective regulation of serine proteases is involved in numerous diseases. Therefore, serine protease inhibitors are promising drug candidates. Aminomethyl diphenyl phosphonates have been regularly used as scaffolds for covalent serine protease inhibition and the design of activity-based probes. However, they cannot make use of a protease's primed site. Therefore, we developed a facile two-step synthesis toward a set of phenyl phosphinates, which is a related scaffold but can interact with the primed site. We tested their inhibitory activity on five different serine proteases and found that a phenyl group directly attached to the phosphorus atom leads to superior activity compared with phosphonates.Approximately 1.7 million Americans develop hospital associated infections each year, resulting in more than 98,000 deaths. One of the main contributors to s