https://www.selleckchem.com/products/glutathione.html The novel coronavirus disease-19 (COVID-19) infection has altered the society, economy, and entire healthcare system. Whilst this pandemic has presented the healthcare system with unprecedented challenges, it has rapidly promoted the adoption of telemedicine to deliver healthcare at a distance. Telemedicine is the use of Information and Communication Technology (ICT) for collecting, organizing, storing, retrieving, and exchanging medical information. But it is faced with the limitations of conventional IP-based protocols which makes it challenging to provide Quality of Service (QoS) for telemedicine due to issues arising from network congestion. Likewise, medical professionals adopting telemedicine are affected with low QoS during health consultations with outpatients due to increased internet usage. Therefore, this study proposes a Software-Defined Networking (SDN) based telemedicine architecture to provide QoS during telemedicine health consultations. This study utilizes secondary data from existing research works in the literature to provide a roadmap for the application of SDN to improve QoS in telemedicine during and after the COVID-19 pandemic. Findings from this study present a practical approach for applying SDN in telemedicine to provide appropriate bandwidth and facilitate real time transmission of medical data.Potato dry rot disease caused by Fusarium species is a major threat to global potato production. The soil and seed-borne diseases influence the crop stand by inhibiting the development of potato sprouts and cause severe rots in seed tubers, table and processing purpose potatoes in cold stores. The symptoms of the dry rot include sunken and wrinkled brown to black tissue patches on tubers having less dry matter and shriveled flesh. Fungal infection accompanied by toxin development in the rotten tubers raises more concern for consumer health. The widespread dry rot causing fungal species (Fusarium