https://www.selleckchem.com/products/ijmjd6.html ans' workloads. This exploratory co-design research confirmed that mental health attributes inferred from patients' social media data can be useful for clinicians, although it also revealed a gap between computational social media analyses and clinicians' expectations and conceptualizations of patients' mental health states. In summary, the iterative co-design process crystallized design directions for the future interface, including how we can organize and provide symptom-related information in a way that minimizes the clinicians' workloads. Semisupervised and unsupervised anomaly detection methods have been widely used in various applications to detect anomalous objects from a given data set. Specifically, these methods are popular in the medical domain because of their suitability for applications where there is a lack of a sufficient data set for the other classes. Infection incidence often brings prolonged hyperglycemia and frequent insulin injections in people with type 1 diabetes, which are significant anomalies. Despite these potentials, there have been very few studies that focused on detecting infection incidences in individuals with type 1 diabetes using a dedicated personalized health model. This study aims to develop a personalized health model that can automatically detect the incidence of infection in people with type 1 diabetes using blood glucose levels and insulin-to-carbohydrate ratio as input variables. The model is expected to detect deviations from the norm because of infection incidences considering elevated blood glucosa, for example, continuous glucose monitoring features and physical activity data, on a large scale. We demonstrated the applicability of one-class classifiers and unsupervised models for the detection of infection incidence in people with type 1 diabetes. In this patient group, detecting infection can provide an opportunity to devise tailored services and also to detect potentia