https://www.selleckchem.com/products/AZD0530.html As expected, groups 1A and 5 showed the clear presence and lack of HER2 copy number gain, respectively, as measured by ddPCR and NGS. In contrast, group 1B and other uncommon FISH groups (groups 2-4) were characterized by a broader range of HER2 copy levels with only a few select cases showing high-level gain. Notably, these cases with increased HER2 copy levels also showed HER2 overexpression by IHC, thus highlighting the correlation between HER2 copy number and HER2 protein expression. Given the concordance between the genomic and protein results, our findings suggest that HER2 IHC may inform HER2 copy number status in patients with unusual FISH patterns. Hence, our results support the current recommendation for using IHC to resolve HER2 status in FISH groups 2-4.Protocellular membranes are thought to be composed of mixtures of single chain amphiphiles, such as fatty acids and their derivatives, moieties that would have been part of the complex prebiotic chemical landscape. The composition and physico-chemical properties of these prebiological membranes would have been significantly affected and regulated by their environment. In this study, pertinent properties were systematically characterized, under early Earth conditions. Two different fatty acids were mixed with their respective alcohol and/or glycerol monoester derivatives to generate combinations of binary and tertiary membrane systems. Their properties were then evaluated as a function of multiple factors including their stability under varying pH, varying Mg2+ ion concentrations, dilution regimes, and their permeability to calcein. Our results demonstrate how environmental constraints would have acted as important prebiotic selection pressures to shape the evolution of prebiological membranes. The study also illustrates that compositionally diverse membrane systems are more stable and robust to multiple selection pressures, thereby making them more suitabl