Furthermore, volumetric BMD (vBMD) derived from MDCT, FEM-based displacement, and FEM-based load of the single vertebrae L1 to L3 were determined. Statistically significant correlations (adjusted for a BMD ratio of fracture/L1-L3 segments) were revealed between the FSU_F and mean load of L1 to L3 (r = 0.814, p = 0.004) and the mean vBMD of L1 to L3 (r = 0.745, p = 0.013), whereas there was no statistically significant association between the FSU_F and FSU_L1-L3 or between FSU_F and the mean displacement of L1 to L3 (p > 0.05). In conclusion, FEM measurements of single vertebrae at the lumbar spine may be able to predict the biomechanical strength of incidentally fractured vertebral segments along the thoracolumbar spine, while FSUs seem to predict only segment-specific fracture risk.Bacterial metabolism shifts from aerobic respiration to fermentation at the transition from exponential to stationary growth phases in response to limited oxygen availability. Corynebacterium glutamicum, a Gram-positive, facultative aerobic bacterium used for industrial amino acid production, excretes l-lactate, acetate, and succinate as fermentation products. The ldhA gene encoding l-lactate dehydrogenase is solely responsible for l-lactate production. Its expression is repressed at the exponential phase and prominently induced at the transition phase. ldhA is transcriptionally repressed by the sugar-phosphate-responsive regulator SugR and l-lactate-responsive regulator LldR. Although ldhA expression is derepressed even at the exponential phase in the sugR and lldR double deletion mutant, a further increase in its expression is still observed at the stationary phase, implicating the action of additional transcription regulators. In this study, involvement of the cAMP receptor protein-type global regulator GlxR in the regulation of ldhA expression was investigated. The GlxR-binding site found in the ldhA promoter was modified to inhibit or enhance binding of GlxR. The ldhA promoter activity and expression of ldhA were altered in proportion to the binding affinity of GlxR. Similarly, l-lactate production was also affected by the binding site modification. Thus, GlxR was demonstrated to act as a transcriptional activator of ldhA.The compositions based on bimodal high-density polyethylene (HDPE, copolymer of ethylene with hexene-1) and in mixture with monomodal tercopolymer of ethylene with butene-1/hexene-1 (LLDPE, low-density polyethylene) have been studied. Phase equilibrium, thermodynamic parameters of interdiffusion in a wide range of temperatures and ratios of co-components were identified by refractometry, differential scanning calorimetry, optical laser interferometry, X-ray phase analysis. The phase state diagrams of the HDPE-LLDPE systems were constructed. It has been established that they belong to the class of state diagrams of "solid crystal solutions with unrestricted mixing of components". The paired parameters of the components interaction and their temperature dependences were calculated. Thermodynamic compatibility of α-olefins in the region of melts and crystallization of one of the components has been shown. The kinetics of formation of interphase boundaries during crystallization of α-olefins has been analyzed. The morphology of crystallized gradient diffusion zones has been analyzed by optical polarization microscopy. The sizes of spherulites in different areas of concentration profiles and values of interdiffusion coefficients were determined.Although pea protein has been widely explored, its consumption is still limited by undesirable sensory characteristics and low solubility. All these properties can be modified during protein extraction process. Besides, previous studies showed that lactic acid bacteria (LAB) have a positive effect on legume protein ingredients in terms of flavor and functional properties. Hence, the objective of this work was to explore an alternative extraction method based on alkaline extraction/isoelectric precipitation (AEIEP) resulting in globulin-rich and residual albumin-rich fractions. Here, the decrease in pH was achieved by lactic fermentation instead of mineral acid addition. Different bacteria strains (Streptococcus thermophilus, Lactobacillus acidophilus and Bifidobacterium lactis) have been used alone or in co-culture, and the results were compared with the usual acidification. The extraction assisted by fermentation led to the increase by 20-30% in protein content/yield of the albumin fraction, meaning that the solubility of the extracted pea protein was increased. This result could be explained by the proteolytic activity of bacteria during lactic fermentation. Therefore, the thermal denaturation properties of the isolated protein fractions measured by differential scanning calorimetry could be mainly ascribed to differences in their polypeptide compositions. In particular, higher denaturation enthalpy in globulin fractions after fermentation compared to AEIEP (~15 J/g protein vs. https://www.selleckchem.com/products/iox1.html ~13 J/g protein) revealed the relative enrichment of this fraction in pea legumins; a higher part of 7S globulins seemed to be consumed by lactic acid bacteria.Efforts to improve the outcome of prostate cancer (PC) patients after radical prostatectomy (RP) include adjuvant or salvage radiation therapy (SRT), but still up to 50% of patients develop a disease progression after radiotherapy (RT). Regional hyperthermia (HT) is well-known to improve tumor sensitivity to RT in several entities. Here we report on a planned interim analysis of tolerability and feasibility after recruitment of the first 50 patients of a trial combining SRT and HT. We conducted a prospective multicenter non-randomized Phase-II-Trial (HTProstate-NCT04159051) investigating the implementation of combined moderate-dose escalated SRT (70 Gy in 35 fractions) and locoregional deep HT (7-10 HT sessions). The primary endpoints were the rate of acute genitourinary (GU), gastrointestinal (GI), and HT-related toxicities, completed HT sessions (≥7), and SRT applications per protocol (≥95% of patients). The two-step design included a planned interim analysis for acute GU-, GI- and HT-specific toxicities to ensure patients' safety.