https://www.selleckchem.com/products/vbit-12.html By synchronizing electrochemical potential scanning with a single-molecule localization super-resolution fluorescence microscope, kinetic fluorescence changes of hundreds of single molecular redox events were tracked simultaneously with high throughput, and subsequent cross-correlation function analysis mapped single molecules' redox potentials (times) out on the imaging area from site to site in unprecedented detail by extracting electrochemically induced fluorescence change from apparently random fluorescence on/off blinking. This work paves the way toward mapping redox states at single-molecule levels in high throughput in chemical and biological systems.Despite the fact that nonlinear optical (NLO) crystals such as AgGaS2 and AgGaSe2 have been widely used in the infrared (IR) range due to their large second harmonic generation (SHG) coefficients and wide range of IR transparency windows, the small laser-induced damage threshold (LIDT) remains a great issue hindering their high-power applications. Herein, three noncentrosymmetric (NCS) chalcogenides AZn4Ga5Se12 (A = K, Rb, or Cs) are successfully obtained through an appropriate flux method after the extensive design and synthesis of the A/Zn/Ga/Q system. Single-crystal X-ray diffraction data demonstrate that they adopt trigonal space group R3 (No. 146) with three-dimensional diamond-like frameworks composed of [M9Se24] layers (M = Zn or Ga) stacking in the same direction and filled by charge-balancing A+ cations. Noticeably, they all exhibit strong powder SHG responses (2.8-3.7 × AgGaS2) and amazing LIDTs (19.2-23.4 × AgGaS2). In addition, theoretical calculations are performed to further determine the relationship between NCS structures and NLO properties. This work provides effective solutions for overcoming the trade-off between strong SHG and high LIDT in IR-NLO materials.The aim of this retrospective study was to assess and illustrate the anatomical variabili