https://www.selleckchem.com/products/cytidine.html Publications on translational studies are trending up and there are a large number of companies selling products marketed to fight biofilm, indicating that there is a significant commercial interest. Researchers can aid in the translational effort by collaborating with clinicians and industry to design and execute clinically relevant pre-clinical studies, which will result in more agents successfully completing clinical studies and entering the market.Biofilms are extremely difficult to eradicate due to their decreased antibiotic susceptibility. Inducing biofilm dispersion could be a potential strategy to help combat biofilm-related infections. Mechanisms of biofilm dispersion can basically be divided into two groups, i.e. active and passive dispersion. Active dispersion depends on a decrease in the intracellular c-di-GMP levels, leading to the production of enzymes that degrade the biofilm matrix and promote dispersion. In contrast, passive dispersion relies on triggers that directly release cells from the biofilm. In the present review, several active and passive dispersion strategies are discussed. In addition, the disadvantages and possible consequences of using dispersion as a treatment approach for biofilm-related infections are also reviewed.Biofilms, surface-adherent microbial communities, are associated with microbial fouling and corrosion in terrestrial water-distribution systems. Biofilms are also present in human spaceflight, particularly in the Water Recovery System (WRS) on the International Space Station (ISS). The WRS is comprised of the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA) which together recycles wastewater from human urine and recovered humidity from the ISS atmosphere. These wastewaters and various process streams are continually inoculated with microorganisms primarily arising from the space crew microbiome. Biofilm-related fouling has been encountered and address