Child Mortality (CM) is a worldwide concern, annually affecting as many as 6.81% children in low- and middle-income countries (LMIC). We used data of the Multiple Indicators Cluster Survey (MICS) (N = 275,160) from 27 LMIC and a machine-learning approach to rank 37 distal causes of CM and identify the top 10 causes in terms of predictive potency. Based on the top 10 causes, we identified households with improved conditions. We retrospectively validated the results by investigating the association between variations of CM and variations of the percentage of households with improved conditions at country-level, between the 2005-2007 and the 2013-2017 administrations of the MICS. A unique contribution of our approach is to identify lesser-known distal causes which likely account for better-known proximal causes notably, the identified distal causes and preventable and treatable through social, educational, and physical interventions. We demonstrate how machine learning can be used to obtain operational information from big dataset to guide interventions and policy makers.Spatialized racial injustices drive morbidity and mortality inequalities. While many factors contribute to environmental injustices, Pb is particularly insidious, and is associated with cardio-vascular, kidney, and immune dysfunctions and is a leading cause of premature death worldwide. Here, we present a revised analysis from the New Orleans dataset of soil lead (SPb) and children's blood Pb (BPb), which was systematically assembled for 2000-2005 and 2011-2016. We show the spatial-temporal inequities in SPb, children's BPb, racial composition, and household income in New Orleans. Comparing medians for the inner city with outlying areas, soil Pb is 7.5 or 9.3 times greater, children's blood Pb is ~2 times higher, and household income is lower. Between 2000-2005 and 2011-2016, a BPb decline occurred. Long-standing environmental and socioeconomic Pb exposure injustices have positioned Black populations at extreme risk of adverse health consequences. Given the overlapping health outcomes of Pb exposure with co-morbidities for conditions such as COVID-19, we suggest that further investigation be conducted on Pb exposure and pandemic-related mortality rates, particularly among Black populations. https://www.selleckchem.com/products/k03861.html Mapping and remediating invisible environmental Pb provides a path forward for preventing future populations from developing a myriad of Pb-related health issues.This study investigated the fortification of a carob-based kefir-like beverage (KLB) with whey permeate (WP) and oat flour (OF). The response surface method was used to show the effect of WP and OF concentrations on lactic acid bacteria and yeast cell densities, pH, total titratable acidity (TTA), total phenolics content (TCP), DPPH radical scavenging activity, and overall acceptability (OA) in KLB. The statistical design provided thirteen formulations where OF concentration varied from 3% to 5% and WP from 10% to 15%. The enrichment of carob pods decoction with WP and OF had a positive effect on biomass production. Overall fermentation was shown to increase TPC of KLB. Furthermore, OF supplementation led to the higher levels of TPC and antiradical activity. WP negatively affected OA at linear and quadratic levels, whereas no effect of OF was observed at the linear level. The optimum point was found by using WP at 11.51% and OF at 4.77%. Optimized KLB resulted in an enrichment of bioavailable phenolics derivatives and highly digestible proteins.Gut microbiota plays crucial roles in maintaining host health. External factors, such as diet, medicines, and environmental toxins, influence the composition of gut microbiota. Ochratoxin A (OTA) is one of the most prevalent and relevant mycotoxins and is a highly abundant food and animal feed contaminant. In the present study, we aimed to investigate OTA gut microbiome toxicity in mice sub-chronically exposed to low doses of OTA (0.21, 0.5, and 1.5 mg/kg body weight) by daily oral gavage for 28 days. Fecal microbiota from control and OTA-treated mice was analyzed using 16S ribosomal RNA (rRNA) gene sequencing followed by metagenomics. OTA exposure caused marked changes in gut microbial community structure, including the decrease in the diversity of fecal microbiota and the relative abundance of Firmicutes, as well as the increase in the relative abundance of Bacteroidetes at the phylum level. At the family level, six bacterial families (unclassified Bacteroidales, Porphyromonadaceae, unclassified Cyanobacteria, Streptococcaceae, Enterobacteriaceae, Ruminococcaceae) were significantly altered by OTA exposure. Interestingly, OTA-induced changes were observed in the lower-dose OTA groups, while high-dose OTA group microbiota was similar to control group. Our results demonstrated that sub-chronic exposure at low doses of OTA alters the structure and diversity of the gut microbial community.Plant-based diets have become popular as a means of reducing the environmental footprint of the diet and promoting human health and animal welfare. Although the percentages of vegetarians and vegans are low compared to omnivores, their numbers have increased significantly in the last years. The use of non-animal food products other than meat alternatives is also increasing and this tendency constitutes an opportunity for the food industry. In this review, we present that plant-based meat and milk alternatives are consolidated but that there is a niche for egg, seafood alternatives, and new products which may not resemble any traditional animal food. However, not all animal food substitutes are sustainable and some of them are even ultra-processed. In addition, there are concerns on safety and labeling, and consumers demand clear information and regulation. The challenges in this field are connected with food design and technology, sensory science, nutrition, and dietetics. Moreover, adequate selection and combination of foods is important in order to achieve consumer acceptance while preventing nutritional deficiencies in those who choose this type of diet.Porous metal materials have important mechanical properties, and there are various manufacturing methods to produce them. In this paper, a porous, thin strip was fabricated by the composite rolling of stainless steel wire mesh and stainless steel powder. Then, a porous plate of stainless steel wire mesh and powder composite (SWMPC) was prepared by folding, pressing, and vacuum sintering the thin strip, and its structural characteristics and permeability were studied. The effects of the gap of the roller, gap of the powder box, number of layers by folding, and sintering parameters on the porosity and mechanical properties were also studied. The results indicated that the permeability increased with the increasing of porosity. Sintering parameters had a great influence on the mechanical properties. The larger the roll gap, the higher the porosity and the weaker the mechanical properties. As the gap of the powder box increased, the porosity decreased and the mechanical properties improved. The number of layers had no effect on the porosity.