https://www.selleckchem.com/products/tl12-186.html The synthesis of a heteromacrocyclic bifunctional chelator with phosphonic acid pendent arms is presented along copper(ii) complexation. Ligand N2S2-POH featuring N,N'-bis-substituted phosphonate pendent arms was isolated in respectable yields, characterized, and chelated to copper(ii). Implementation of both Moedritzer-Irani and Kabachnik-Fields conditions using aza-thia macrocycle 1,8-dithia-4,11-diazacyclotetradecane afforded 1,8-dithia-4,11-diazacyclotetradecane-4,11-diyl-bis-(methylene)-bis-(phosphonic acid) (N2S2-POH). Kinetic NMR studies provided four acid dissociation constants with respect to hydronium ion concentration. Benesi-Hildebrand binding experiment provided a conditional formation constant of 2.8 × 104 M-1. Heteromacrocycle N2S2-POH readily formed an encapsulated copper(ii) chelate at room temperature, which was examined through EPR analysis.The reactions of hexabromocyclododecane (HBCD) isomers with Fe(ii) associated with iron oxides were performed in a pH range from 6.15 to 7.50 at room temperature. It was observed that Fe(ii) associated with iron oxides (i.e., goethite, magnetite, hematite) is a better reductant than just an aqueous solution of Fe(ii) to potentially reduce HBCD in subsurface environments. The reaction of HBCD with Fe(ii) associated with iron oxides is also stereoisomer specific with α-HBCD reacting much slower than β-HBCD and γ-HBCD. The reaction is pH dependent and it is faster with increased pH. The initial concentration of Fe(ii) and HBCD can also affect the reaction rate. The reaction is negligible when all the Fe(ii) is sorbed to magnetite and no Fe(ii) remains dissolved. It was also observed that the reaction of 100 nM HBCD is slower than the reaction of 1.0 μM HBCD with Fe(ii) associated with magnetite. In addition, natural organic matter (NOM) was found to inhibit the degradation of HBCD by Fe(ii) associated with iron oxides.In this study, demethylcurcumin (DC), a minor