https://www.selleckchem.com/HDAC.html π-Conjugated semiconductors, primarily composed of elements with low atomic number, are regarded as promising spin-transport materials due to the weak spin-orbit coupling interaction and hence long spin relaxation time. Moreover, a large number of additional functions of organic semiconductors (OSCs), such as the abundant photo-electric properties, flexibility, and tailorability, endow the organic spintronic devices more unique properties and functionalities. Particularly, the integration of the photo-electric functionality and excellent spin transport property of OSCs in a single spintronic device has even shown great potential for the realization of spin manipulation in OSCs. In this review, the application of OSCs in spintronic study will be succinctly discussed. As the most important and extensive application, the long-distance spin transport property of OSCs will be discussed first. Subsequently, several multifunctional spintronic devices based on OSCs will be summarized. After that, the organic-based magnets used for the electrodes of spintronic devices will be introduced. Finally, according to the latest progress, spin manipulation in OSCs via novel spintronic devices together with other prospects and challenges will be outlined.The process of selective oxy-functionalization of hydrocarbons using peroxide, O3, H2O2, O2, and transition metals can be carried out by the reactive oxygen species such as hydroxyl/hydroperoxyl radical and/or metal oxygenated species generated in the catalytic reaction. Thus, a variety of mechanisms have been proposed for the selective catalytic oxidation of various hydrocarbons including light alkanes, olefins, and simple aromatics by the biological metalloproteins and their biomimetics either in their homogeneous or heterogeneous platforms. Most studies involving these metalloproteins are Fe or Cu monooxygenases. The pathways carried out by these metalloenzymes in the oxidation of C-H bonds inv