https://www.selleckchem.com/products/shr0302.html Brain magnetic resonance imaging showed increased ischemic foci and lacunar infarction, worse encephalatrophy, and demyelination after EGFR-TKI therapy. These psychiatric symptoms did not improve but worsened after taking antipsychotic drugs, suggesting that they were irreversible. The neuropsychiatric symptoms in EGFR-TKI treatment must be considered, and the underlying reason warrants further study. Copyright © 2020 Zhu et al.Coumarins are well-known for their antioxidant effect and aromatic property, thus, they are one of ingredients commonly added in cosmetics and personal care products. Quantitative structure-activity relationships (QSAR) modeling is an in silico method widely used to facilitate rational design and structural optimization of novel drugs. Herein, QSAR modeling was used to elucidate key properties governing antioxidant activity of a series of the reported coumarin-based antioxidant agents (1-28). Several types of descriptors (calculated from 4 softwares i.e., Gaussian 09, Dragon, PaDEL and Mold2 softwares) were used to generate three multiple linear regression (MLR) models with preferable predictive performance (Q 2 LOO-CV = 0.813-0.908; RMSE LOO-CV = 0.150-0.210; Q 2 Ext = 0.875-0.952; RMSE Ext = 0.104-0.166). QSAR analysis indicated that number of secondary amines (nArNHR), polarizability (G2p), electronegativity (D467, D580, SpMin2_Bhe, and MATS8e), van der Waals volume (D491 and D461), and H-bond potential (SHBint4) are important properties governing antioxidant activity. The constructed models were also applied to guide in silico rational design of an additional set of 69 structurally modified coumarins with improved antioxidant activity. Finally, a set of 9 promising newly design compounds were highlighted for further development. Structure-activity analysis also revealed key features required for potent activity which would be useful for guiding the future rational design. In overview, our