https://www.selleckchem.com/products/PHA-793887.html The limits of detection of αSynagg were 400 and 300 pg/mL for ssMAbs 3C5 and 5H6, respectively. These tandem EIAs have the potential to add to the repertoire of tools for earlier diagnosis of this debilitating disorder, as well as for drug development strategies.This work demonstrates the use of an sp2-bonded carbon microspot boron doped diamond (BDD) electrode for voltammetric measurement of both pH and analyte concentration in a pH-dependent speciation process. In particular, the electrode was employed for the voltammetric detection of pH and hypochlorite (OCl-) in unbuffered, aerated solutions over the pH range 4-10. Knowledge of both pH and [OCl-] is essential for determination of free chlorine concentration. The whole surface of the microspot BDD electrode was found active toward the voltammetric oxidation of OCl-, with OCl- showing a characteristic response at +1.5 V vs SCE. In contrast, it was only the surface integrated quinones (Q) in sp2-bonded carbon regions of the BDD electrode that were responsible for the voltammetric pH signal. A Nernstian response for pH (gradient = 63 ± 1 mV pH-1) was determined from proton coupled electron transfer at the BDD-Q electrode, over the potential range -0.4-0.5 V vs SCE. By measuring both OCl- and pH voltammetrically, over the pH range 4-10, the OCl- oxidative current was found to correlate extremely well with the predicted pH-dependent [OCl-] speciation profile.Probe molecule vibrational spectra have a long history of being used to characterize materials including metals, oxides, metal-organic frameworks, and even human proteins. Furthermore, recent advances in machine learning have enabled computationally generated spectra to aid in detailed characterization of complex surfaces with probe molecules. Despite widespread use of probe molecules, the science of probe molecule selection is underdeveloped. Here, we develop physical concepts, including orbital interaction en