https://www.selleckchem.com/products/bmn-673.html Renal tubular dysgenesis (RTD) is a rare fatal disorder in which there is poor development of proximal tubules, leading to oligohydramnios and the Potter sequences. RTD occurs secondary to renin-angiotensin system (RAS) blockade during the early stages of fetal development or due to autosomal recessive mutation of genes in the RAS pathway. A boy born at 33+1 weeks due to cord prolapse was found to be anuric and hypotensive. Pregnancy was complicated by severe oligohydramnios from gestational age 28+4 weeks. Abdominal sonography revealed diffuse globular enlargement of both kidneys with increased cortical parenchymal echogenicity. Infantogram showed a narrow thoracic cage and skull X-ray showed large fontanelles and wide sutures suggestive of ossification delay. Basal plasma renin activity was markedly elevated and angiotensin-converting enzyme was undetectable. Despite adequate use of medications, peritoneal dialysis, and respiratory support, he did not recover and expired on the 23rd day of life. At first, autosomal recessive polycystic kidney disease was suspected, but severe oligohydramnios along with refractory hypotension, anuria, skull ossification delay and high renin levels made RTD suspicious. ACE gene analysis revealed compound heterozygous pathogenic variations of c.1454.dupC in exon 9 and c.2141dupA in exon 14, confirming RTD. Based on our findings, we propose that, although rare, RTD should be suspected in patients with severe oligohydramnios and refractory hypotension. Exposure to ozone (O₃) induces neutrophilic inflammation and goblet cell hyperplasia in humans and experimental animals. Because the solute carrier family 26-member 4 (Slc26a4; pendrin) gene induces mucin production and intraluminal acidification in the airways, it was hypothesized to be a key molecule in O₃-induced airway injury. Thus, we evaluated the role of Slc26a4 and the protective effects of ammonium chloride (NH₄Cl) in O₃-induced