https://www.selleckchem.com/products/abbv-2222.html The theoretical location of an optimal reference sphere, which corresponds to this value, can be obtained. Then, we perform a practical test, which starts at the initial zero position, and find an actual minimum PV value near its theoretical location. The difference between the theoretical location and the actual one is the compensation quantity. Finally, we execute ASSI measurement to aspherical optics. The location coordinate of each subaperture is compensated with the acquired quantity. Through the experiments, it can be concluded that the proposed method can improve the measurement accuracy of ASSI in terms of error elimination. The results produced by the new method are more desirable than those of the conventional one.This paper presents a novel beam flexure-based X-Y-θ micro-stage integrated with a laser interferometric type displacement measurement approach for reducing the measurement error induced by the rotational motion and cross-axis load effect. Aiming at achieving high-precision real-time control of the proposed system, an active disturbance rejection controller is developed such that the inevitable parasitic and coupling errors can be treated as disturbances and actively compensated by using the extended state observer. #link# Finally, the verification experiments are deployed on the fabricated prototype, where the results indicate that the proposed approach achieves excellent performance in terms of motion accuracy and disturbance rejections.A novel probe-type thin film thermocouple has been fabricated successfully for high temperature measurement applications. WRe26 (tungsten-26% rhenium)-In2O3 thermoelectric materials were used in the thermocouples to achieve high thermoelectric output and high temperature resistance. The films were deposited on a cylindrical substrate by magnetron sputtering technology. The annealing process of the thermocouples was studied to achieve optimal performance. The ca