https://www.selleckchem.com/products/fino2.html Phosphate acyl-acyl carrier protein (ACP) acyltransferase PlsX is a peripheral enzyme catalysing acyl transfer to orthophosphate in phospholipid synthesis. Little is known about how it recognises substrates and catalyses the acyl transfer. Here we show that its active site includes many residues lining a long, narrow gorge at the dimeric interface, two positive residues forming a positive ACP docking pad next to the interfacial gorge, and a number of strictly conserved residues significantly contributing to the catalytic activity. These findings suggest a substrate recognition mode and a catalytic mechanism that are different from those of phosphotransacetylases catalysing a similar acyl transfer reaction. The catalytic mechanism involves substrate activation and transition-state stabilization by two strictly conserved residues, Lys184 and Asn229. Another noticeable feature of the catalysis is the release of the acyl phosphate product near the membrane, which might facilitate its membrane insertion. © 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.Visualizing and manipulating the behavior of proteins is crucial to understanding the physiology of the cell. Methods of biorthogonal protein labeling are important tools to attain this goal. In this review, we discuss advances in probe technology specific for self-labeling protein tags, focusing mainly on the application of HaloTag and SNAP-tag systems. We describe the latest developments in small-molecule probes that enable fluorogenic (no wash) imaging and super-resolution fluorescence microscopy. In addition, we cover several methodologies that enable the perturbation or manipulation of protein behavior and function towards the control of biological pathways. Thus, current technical advances in the HaloTag and SNAP-tag systems means that they are becoming powerful tools to enable the visualization and manipulation of biological processes, providing invaluable scientific