https://www.selleckchem.com/products/wz4003.html Principal component analysis grouped the PTEs in two dimensions that cumulatively explained 62.3% of their variation, and hierarchical clustering identified two distinct clusters indicating that Cr originated from a unique source. The health risk assessment revealed that exposure to As and Cd induced the greatest non-carcinogenic risk, whereas Cr was most likely to cause cancer risks. Furthermore, contaminated vegetable consumption was riskier for children than adults. The critical factors contributing to PTE contamination in vegetable gardens were determined to be vegetable species, total soil element content, soil pH, and soil organic matter content. Overall, Cr and As pollution present the greatest concern, and community health care services must enact more effective regulatory and preventative measures for urban gardens in terms of PTEs.Breeding for higher yield and wider adaptability are major objectives of soybean crop improvement. In the present study, 68 advanced breeding lines along with seven best checks were evaluated for yield and attributing traits by following group balanced block design. Three blocks were constituted based on the maturity duration of the breeding lines. High genetic variability for the twelve quantitative traits was found within and across the three blocks. Several genotypes were found to outperform check varieties for yield and attributing traits. During the same crop season, one of the promising entries, NRC 128,was evaluated across seven locations for its wider adaptability and it has shown stable performance in Northern plain Zone with > 20% higher yield superiority over best check PS 1347. However, it produced 9.8% yield superiority over best check in Eastern Zone. Screening for waterlogging tolerance under artificial conditions revealed that NRC 128 was on par with the tolerant variety JS 97-52. Based on the yield superiority, wider adaptability and waterlogging tolerance, NRC 128