Additionally, high bromide concentration and acidic pH promoted more bromo-HAAs formation, and the presence of NOM significantly suppressed bromate formation. Analogous to ozonation, the UV/chlorine pre-oxidation could reduce the HAA9 formation potentials during post-chlorination at mildly alkaline pH. The photobacterium bioassay further demonstrated that although the UV/chlorine treatment might have increased the acute toxicity, the post-chlorination treatment could polish the acute toxicity to the level of chlorination alone. These results suggest that with the restricted chlorine-dosing strategy, the trade-off between oxidation/disinfection efficiency and DBPs formation can be controlled by monitoring CTFAC and ΔUVA254 values during UV/chlorine treatment.Non-steroidal anti-inflammatory drugs as an important group of emerging environmental contaminants in irrigation water and soils can influence biochemical and physiological processes essential for growth and development in plants as non-target organisms. Plants are able to take up, transport, transform, and accumulate drugs in the roots. Root biomass in ten-days old pea plants was lowered by 6% already under 0.1 mg/L naproxen (NPX) due to a lowered number of lateral roots, although 0.5 mg/L NPX stimulated the total root length by 30% as against control. Higher section area (by 40%) in root tip, area of xylem (by 150%) or stele-to-section ratio (by 10%) in zone of maturation, and lower section area in zone of lateral roots (by 18%) prove the changes in primary root anatomy and its earlier differentiation at 10 mg/L NPX. Accumulated NPX (up to 10 μg/g DW at 10 mg/L) and products of its metabolization in roots increased the amounts of hydrogen peroxide (by 33%), and superoxide (by 62%), which was reflected in elevated lipid peroxidation (by 32%), disruption of membrane integrity (by 89%) and lowering both oxidoreductase and dehydrogenase activities (by up to 40%). https://www.selleckchem.com/products/10-dab-10-deacetylbaccatin.html Elevated antioxidant capacity (SOD, APX, and other molecules) under low treatments decreased at 10 mg/L NPX (both by approx. 30%). Naproxen was proved to cause changes at both cellular and tissue levels in roots, which was also reflected in their anatomy and morphology. Higher environmental loading through drugs thus can influence even the root function.Owing to the seriousness of the ecological risk and human hazard of inorganic wood preservatives, their effective removal was gradually recognized. This paper details different types of wood preservatives, their perniciousness, and their potential removal alternatives, while the wood treatment process is briefly described. Among decontamination methods, microbial remediation is considered as an environmentally friendly approach with enormous potentialities over the conventional treatments. In the current review, the mechanism of bioremediation is summed up and recent advances, challenges, and future perspectives of microbial remediation are discussed. The removal of heavy metals from treated wood requires a combination of various technologies to obtain higher performance. Meanwhile, the decontaminated wood generated through bioremediation can be effectively reused.Increasing use of current-use pesticides (CUPs) in Africa raises environmental and public health concerns. But there is a large uncertainty about their occurrence and the composition of pesticide mixtures on this continent. This paper investigates the presence of 27 CUPs in air across 20 sampling sites in Africa. 166 passive air samples, consisting of polyurethane foam (PUF), were collected in 12 African countries between 2010 and 2018. Samples were extracted with methanol and analyzed via high-performance liquid chromatography coupled with tandem mass spectrometry. The detection frequencies of CUPs per site were compared to land use patterns and sampling years, while their similarities were assessed using hierarchical cluster analysis. Overall, 24 CUPs were detected at least once. In 93% of all samples, at least one CUP was detected, while 78% of the samples had mixtures of two or more CUPs (median 3, interquartile range 5). Atrazine and chlorpyrifos were detected in 19 out of 20 sampling sites. Carbaryl, metazachlor, simazine, tebuconazole and terbuthylazine had the highest detection frequencies at sampling sites dominated by croplands. Across all the sampling years, 16 CUPs were present. Seven CUPs were newly detected from 2016 onwards (azinfos-methyl, dimetachlor, chlorsulfuron, chlortoluron, isoproturon, prochloraz and pyrazon), while metamitron was only present before 2012. Sites within a radius of about 200 km showed similarities in detected CUP mixtures across all samples. Our results show the presence of CUP mixtures across multiple agricultural and urban locations in Africa which requires further investigation of related environmental and human health risks.Microplastics enter natural water bodies by a variety of pathways, one of them being wastewater streams. The role of industrial wastewater in overall microplastic emissions has so far only been estimated, because access is usually restricted. This is the first report providing quantitative data on microplastics in industrial wastewaters. The wastewater discharge of three different industrial sites was sampled in the size ranges of small microplastics (10-1000 μm) and large microplastics (1000-5000 μm). Differential scanning calorimetry (DSC) was used to detect and quantify semi-crystalline thermoplastics. Polyethylene (PE) and polypropylene (PP) were the most abundant polymers, but polyamide (PA) and polyethylene terephthalate (PET) were also found. As all three industrial sites had wastewater treatment plants (WWTP), the total concentrations were in the μg L-1 range, comparable to organic micropollutants in municipal WWTP effluents. At one industrial site, the removal capacity of the WWTP was evaluated by sampling and analyzing the influent as well as the effluent. The total microplastics concentration in the influent was in the g L-1 range, yielding a removal capacity of the industrial WWTP of >99.99 %.Neonicotinoids have been described as toxic to bees. In this context, the A. mellifera foragers were exposed to a sublethal concentration of thiamethoxam (LC50/100 0,0227 ng de thiamethoxam/μL-1 diet), a neurotoxic insecticide, for 8 days; and it was decided to investigate the insecticide effect on the brain by a shotgun proteomic approach followed by label-free quantitative-based proteomics. A total of 401 proteins were identified in the control group (CG); and a total of 350 proteins in the thiamethoxam exposed group (TMX). Quantitative proteomics data showed up 251 proteins with significant quantitative values in the TMX group. These findings demonstrated the occurrence of shared and unique proteins with altered expression in the TMX group, such as ATP synthase subunit beta, heat shock protein cognate 4, spectrin beta chain-like, mushroom body large-type Kenyon cell-specific protein 1-like, tubulin alpha-1 chain-like, arginine kinase, epidermal growth factor receptor, odorant receptor, glutamine synthetase, glutamate receptor, and cytochrome P450 4c3.