Our findings provide insights into the interactions between mixed contaminants in biochar-amended soils and the long-term efficacy of biochar treatments on metal sorption to soils.In this study, bamboo-like nitrogen-doped carbon nanotubes (BN-CNTs) are successfully deposited on etched iron mesh (d-Fe) using chemical vapor deposition (CVD) method with acetonitrile as precursor. The acidic etching process is necessary for the special BN-CNTs structure formation by exposing more Fe0 sites. The BN-CNTs/d-Fe is then evaluated for the electrochemically-assisted PMS activation to degrade phenol. Under cyclic voltammetry (CV, 0-1 V vs. RHE) assistant, 20 ppm phenol can be degraded in 30 min with a rate constant of 0.2837 min-1, ~78 times more than that without CV. Some Fe3+ species in the catalyst will be reduced at the initial stage, a two-step pseudo-first-order kinetic is thus used for the degradation curves fitting. Both the structure defects and doped nitrogen atoms are responsible for the high catalytic activity of BN-CNTs. According to the quenching tests, both radical and non-radical processes are present for PMS activation, thus obtaining enhanced organics removal efficiency. The electrochemically assistant could enhance the PMS adsorption on the electrode as well as electrons transfer between Fen+ and PMS, thus increasing the PMS activation efficiency. The utilization of earth-abundant Fe mesh for the fabricating free-standing electrodes provide a potential low-cost and effective strategy of waste water remediation.Urban road build-up solids contain toxic metals posing potential risks to human health. Management of human health risks arising from these metals is critical in urban areas. https://www.selleckchem.com/products/zebularine.html This study collected solids build-up data from 16 study sites with various land use and traffic characteristics. Source quantification was conducted using PCA/APCS receptor model. It was found that soil and asphalt wear are the largest contributors (69.43%) to risk and mainly contribute Al, Cr, Mn, Fe, Ni, Zn and Pb to build-up solids. Brake wear is the second largest contributor accounting for 17.20% and contributes Cd and Cu. Tyre wear is the third major contributor (11.38%) and it primarily contributes Ni, Zn and Cr. Mathematical equations were fitted to estimate the risk against daily traffic volume and land use fractions, and the uncertainty analysis highlighted that risk assessment should account for the variability in metal concentrations rather than a point value of concentrations at a given time and space. Based on source quantification and risk assessment, an integrated risk management model was developed to manage human health risks from toxic metals in build-up solids. This risk model provides guidance for urban planning and land use development to mitigate risk arising from urban road deposited solids.The formation of iron-sulfur-arsenic (Fe-S-As) minerals during biogeochemical processes in As contaminated aquifers remains poorly understood despite their importance to understanding As release and transport in such systems. In this study, X-ray absorption and Mössbauer spectroscopies complemented by electron microscopy, and chemical extractions were used to examine vertical changes of As, Fe and S speciation for the example of sediments in the Hetao Basin. Reduction of Fe(III), As(V) and SO42- species were shown to co-occur in the aquifers. Iron oxides were observed to be predominantly goethite and hematite (36 - 12%) and appeared to decrease in abundance with depth. Furthermore, reduced As (including arsenite and As sulfides) and sulfur species (including S(-II), S(-I) and S0) increased from 16% to 76% and from 13% to 44%, respectively. Iron oxides were the major As carrier in the sediments, and the lower groundwater As concentration consists with less desorbable and reducible As in the sediments. The formation of As-Fe sulfides (e.g., As containing pyrite and greigite) induced by redox heterogeneities likely contribute to localized lower groundwater As concentrations. These results help to further elucidate the complex relationship between biogeochemical processes and minerals formation in As contaminated aquifers.Mapping of leaves of hyperaccumulators can provide insights into the mechanisms these species utilize to accumulate high metal concentrations. We used synchrotron-based X-ray fluorescence (SXRF) to perform Zn and Ni imaging in leaves of different ages of Noccaea caerulescens. A mature leaf of the related non-hyperaccumulator Thlaspi arvense was also imaged. The concentrations of Zn, Ni, Co, and Cr in N. caerulescens grown on an ultramafic soil were 9-, 10-, 12-, and 3-fold higher than T. arvense. N. caerulescens showed an exceptional ability to accumulate Zn from the soil, posing a bioconcentration factor of 6.7. T. arvense had Zn and Ni distributed uniformly in the leaf blade with doubling fluorescence counts in the tip and margins, suggesting a strategy to excrete metals and avoid toxicity. On the other hand, N. caerulescens displayed distinctly different Zn and Ni accumulation patterns, regardless of the age or metal concentration in the leaves. Zinc was mainly distributed in the cells surrounding the central and secondary veins. Nickel accumulated in the margins and tips of the leaf blade. Given the time required to image large leaves in synchrotron facilities, small leaves can be used to represent the leaf distribution of Zn and Ni in N. caerulescens.We investigated the performance of a lab-scale moving bed biofilm reactor (MBBR) with respect to general bioconversion processes and biotransformation of two commonly used organophosphorus pesticides, Chlorpyrifos (CHL) and Malathion (MAL). The reactor was operated for 300 days under different organic loads by changing hydraulic retention time (HRT). The decrease in organic load resulted in the formation of a thinner biofilm and the growth of more biomass in the bulk, which greatly shifted bioconversion processes. The low organic loading supported more nitrification in the reactor, but an opposite trend was observed for denitrification, which was enhanced at higher organic loading where the formation of anoxic zones in the thick biofilm was favored. 70% and 55% removal corresponding to 210 and 165 µg/m2/d occurred for MAL and CHL, respectively, at an HRT of 3 h and progressively increased with higher HRTs. Phylogenetic analysis revealed a shift in composition and abundance of taxa throughout the reactor operation where lower loading rate supported the growth of a more diverse and evenly distributed community.