https://www.selleckchem.com/products/loxo-195.html Lead halide perovskite nanocrystals (NCs) are a class of promising light-emitting materials and have been considered as gain media in lasers. Strong exciton-exciton interactions in NCs cause an energy shift of the lowest optical transition and affect the optical gain threshold. Here, we clarify the dynamics of exciton-exciton interactions in highly photoexcited CsPbI3 NCs by double-pump transient absorption spectroscopy. This method provides control over the population of each excited state by varying the time interval between the two pump pulses. We find that the band-edge energy shift induced by the formation of asymmetric hot-biexcitons (comprising one ground-state exciton and one hot exciton) is smaller than that induced by hot excitons and hot biexcitons in the ensemble. We demonstrate that the generation of asymmetric hot-biexcitons reduces the optical gain threshold in the CsPbI3 NC ensemble.Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultralow power technologies. Among a few suggested approaches, magneto-ionic control of magnetism has demonstrated large modulation of magnetic anisotropy. Moreover, the recent demonstration of magneto-ionic devices using hydrogen ions presented relatively fast magnetization toggle switching, tsw ∼ 100 ms, at room temperature. However, the operation speed may need to be significantly improved to be used for modern electronic devices. Here, we demonstrate that the speed of proton-induced magnetization toggle switching largely depends on proton-conducting oxides. We achieve ∼1 ms reliable (>103 cycles) switching using yttria-stabilized zirconia (YSZ), which is ∼100 times faster than the state-of-the-art magneto-ionic devices reported to date at room temperature. Our results suggest that further engineering of the proton-conducting materials could bring substantial improvement that may enable new l