BACKGROUND The prostate-specific phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene-conditional knockout (KO) mouse carcinogenesis model is highly desirable for studies of prostate cancer biology and chemoprevention due to its close resemblance of primary molecular defect and many histopathological features of human prostate cancer including androgen response and disease progression from prostatic intraepithelial neoplasia to invasive adenocarcinoma. Here, we profiled the proteome and transcriptome of the Pten-KO mouse prostate tumors for global macromolecular expression alterations for signaling changes and biomarker signatures. METHODS For proteomics, four pairs of whole prostates from tissue-specific conditional knockout Pten-KO mice (12-15 weeks of age) and their respective wild-type littermates housed in the same cages were analyzed by 8-plex isobaric tags for relative and absolute quantitation iTRAQ. For microarray transcriptomic analysis, three additional matched pairs of prostate/tumo as the most profound macromolecular landscape changes, and the predicted key nodal activities through Akt, nuclear factor-kappaB, and P53 in the Pten-KO prostate tumor. Comparison with other genetically modified mouse prostate carcinogenesis models revealed notable molecular distinctions, especially the dominance of immune and inflammation features in the Pten-KO prostate tumors. CONCLUSIONS Our work identified prominent macromolecular signatures and key nodal molecules that help to illuminate the patho- and immunobiology of Pten-loss driven prostate cancer and can facilitate the choice of biomarkers for chemoprevention and interception studies in this clinically relevant mouse prostate cancer model. © 2020 The Authors. The Prostate published by Wiley Periodicals, Inc.This study compared femoral cartilage characteristics between age- and sex-matched individuals with (n = 48, age = 22.8 ± 3.5 years; body mass index [BMI] = 33.1 ± 4.1 kg/m2 ) and without obesity (n = 48 age = 22.0 ± 2.6 years; BMI = 21.7 ± 1.7 kg/m2 ) and evaluated the associations between body composition, quadriceps function, and gait kinetics with femoral cartilage characteristics. Medial and lateral femoral cartilage thickness, mediallateral thickness ratio and medial and lateral cartilage echo intensity were measured using ultrasound imaging. Body composition was assessed using air displacement plethysmography. Quadriceps function was assessed via maximal isometric knee extension. Three-dimensional gait biomechanics were recorded to extract peak external knee flexion and adduction moments, and peak loading rate of the vertical ground reaction force. Cartilage outcomes were compared between groups using one-way multivariate analysis of variance. Stepwise moderated regression evaluated the association bety Periodicals, Inc.Metastatic breast, prostate, lung, and other cancers often affect bone, causing pain, increasing fracture risk, and decreasing function. Management of metastatic bone disease (MBD) is clinically challenging when there is potential but uncertain risk of pathological fracture. Management of MBD has become a major focus within orthopedic oncology with respect to fracture and impending fracture care. If impending skeletal-related events (SREs), particularly pathologic fracture, could be predicted, increasing evidence suggests that prophylactic surgical treatment improves patient outcomes. However, current fracture risk assessment and radiographic metrics do not have high accuracy and have not been combined with relevant patient survival tools. This review first explores the prevalence, incidence, and morbidity of MBD and associated SREs for different cancer types. https://www.selleckchem.com/products/estradiol-benzoate.html Strengths and limitations of current fracture risk scoring systems for spinal stability and long bone fracture are highlighted. More recent computed tomography (CT)-based structural rigidity analysis (CTRA) and finite element (FE) analysis methods offer advantages of increased specificity (true negative rate), but are limited in availability. Other fracture prediction approaches including parametric response mapping and positron emission tomography/computed tomography measures show early promise. Substantial new information to inform clinical decision-making includes measures of survival, clinical benefits, and economic analysis of prophylactic treatment compared to after-fracture stabilization. Areas of future research include use of big data and machine learning to predict SREs, greater access and refinement of CTRA/FE approaches, combination of clinical survival prediction tools with radiographically based fracture risk assessment, and net benefit analysis for fracture risk assessment and prophylactic treatment. © 2020 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.Proteus spp. bacteria frequently serve as opportunistic pathogens that can infect many animals and show positive survival and existence in various natural environments. The evolutionary pattern of Proteus spp. is an unknown topic, which benefits understanding the different evolutionary dynamics for excellent bacterial adaptation to various environments. Here, the eight whole genomes of different Proteus species were analyzed for the interplay between nucleotide usage and synonymous codon usage. Although the orthologous average nucleotide identity and average nucleotide identity display the genetic diversity of these Proteus species at the genome level, the principal component analysis further shows that these species sustain the specific genetic niche at the aspect of synonymous codon usage patterns. Interestingly, although these Proteus species have A/T rich genes with underrepresented G (guanine) or C (cytosine) at the third codon positions and overrepresented A or T at these positions, some synonymous codons with A or T end are obviously suppressed in usage. The overall codon usage pattern reflected by the effective number of codons (ENC) has a significantly positive correlation with GC3 content (GC content at the third codon position), and ENC has a significantly negative correlation with the adaptation index for these species. These results suggest that the mutation pressure caused by nucleotide composition constraint serves as a dominant evolutionary dynamic driving evolutionary trend of Proteus spp., along with other selections related to natural selection, replication and fine-tune translation, and so on. Taken together, the analyses help to understand the evolutionary interplay between nucleotide and codon usage at the gene level of Proteus. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.